Celiac disease (CD) is an immune-mediated disorder triggered by gluten exposure. The contribution of the adaptive immune response to CD pathogenesis has been extensively studied, but the absence of valid experimental models has hampered our understanding of the early steps leading to loss of gluten tolerance. Using intestinal organoids developed from duodenal biopsies from both non-celiac (NC) and celiac (CD) patients, we explored the contribution of gut epithelium to CD pathogenesis and the role of microbiota-derived molecules in modulating the epithelium's response to gluten. When compared to NC, RNA sequencing of CD organoids revealed significantly altered expression of genes associated with gut barrier, innate immune response, and stem cell functions. Monolayers derived from CD organoids exposed to gliadin showed increased intestinal permeability and enhanced secretion of pro-inflammatory cytokines compared to NC controls. Microbiota-derived bioproducts butyrate, lactate, and polysaccharide A improved barrier function and reduced gliadin-induced cytokine secretion. We concluded that: (1) patient-derived organoids faithfully express established and newly identified molecular signatures characteristic of CD. (2) microbiota-derived bioproducts can be used to modulate the epithelial response to gluten. Finally, we validated the use of patient-derived organoids monolayers as a novel tool for the study of CD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505524 | PMC |
http://dx.doi.org/10.1038/s41598-019-43426-w | DOI Listing |
J Clin Invest
December 2024
Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, France.
Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system (CNS), the pathophysiology of which remains unclear and for which there is no definitive cure. Antimicrobial peptides (AMPs) are immunomodulatory molecules expressed in various tissues, including the CNS. Here, we investigated whether the cathelicidin-related AMP (CRAMP) modulated the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS.
View Article and Find Full Text PDFSci Rep
December 2024
"Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania.
Parkinson's Disease (PD) is a prevalent and escalating neurodegenerative disorder with significant societal implications. Despite being considered a proteinopathy, in which the aggregation of α-synuclein is the main pathological change, the intricacies of PD initiation remain elusive. Recent evidence suggests a potential link between gut microbiota and PD initiation, emphasizing the need to explore the effects of microbiota-derived molecules on neuronal cells.
View Article and Find Full Text PDFSci Rep
November 2024
Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Avenida Plaza 680, Santiago, Chile.
Alcohol use disorder (AUD) represents a public health crisis with few FDA-approved medications for its treatment. Growing evidence supports the key role of the bidirectional communication between the gut microbiota and the central nervous system (CNS) during the initiation and progression of alcohol use disorder. Among the different protective molecules that could mediate this communication, short chain fatty acids (SCFAs) have emerged as attractive candidates, since these gut microbiota-derived molecules have multi-target effects that could normalize several of the functional and structural parameters altered by chronic alcohol abuse.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
November 2024
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
The interaction between the gut-microbiota-derived metabolites and brain has long been recognized in both health and disease. The liver, as the primary metabolic organ for nutrients in animals or humans, plays an indispensable role in signal transduction. Therefore, in recent years, Researcher have proposed the Gut-Liver-Brain Axis (GLBA) as a supplement to the Gut-Brain Axis.
View Article and Find Full Text PDFGut Microbes
November 2024
Institute of Molecular Biosciences, University of Graz, Graz, Austria.
The human intestinal tract is densely colonized by a microbial community that is subject to intense competition. Bacteria in this complex habitat seek to outcompete their neighbors for nutrients and eliminate competitors with antibacterial toxins. Antagonism can be mediated by diverse effectors including toxic proteins and small molecule inhibitors that are released extracellularly or delivered by specialized secretion systems to targeted cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!