A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome-wide characterization of ALDH Superfamily in Brassica rapa and enhancement of stress tolerance in heterologous hosts by BrALDH7B2 expression. | LitMetric

Aldehyde dehydrogenase (ALDH) carries out oxidation of toxic aldehydes using NAD/NADP as cofactors. In the present study, we performed a genome-wide identification and expression analysis of genes in the ALDH gene family in Brassica rapa. A total of 23 ALDH genes in the superfamily have been identified according to the classification of ALDH Gene Nomenclature Committee (AGNC). They were distributed unevenly across all 10 chromosomes. All the 23 Brassica rapa ALDH (BrALDH) genes exhibited varied expression patterns during treatments with abiotic stress inducers and hormonal treatments. The relative expression profiles of ALDH genes in B. rapa showed that they are predominantly expressed in leaves and stem suggesting their function in the vegetative tissues. BrALDH7B2 showed a strong response to abiotic stress and hormonal treatments as compared to other ALDH genes; therefore, it was overexpressed in heterologous hosts, E. coli and yeast to study its possible function under abiotic stress conditions. Over-expression of BrALDH7B2 in heterologous systems, E. coli and yeast cells conferred significant tolerance to abiotic stress treatments. Results from this work demonstrate that BrALDH genes are a promising and untapped genetic resource for crop improvement and could be deployed further in the development of drought and salinity tolerance in B. rapa and other economically important crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505040PMC
http://dx.doi.org/10.1038/s41598-019-43332-1DOI Listing

Publication Analysis

Top Keywords

abiotic stress
16
brassica rapa
12
aldh genes
12
aldh
8
heterologous hosts
8
aldh gene
8
braldh genes
8
hormonal treatments
8
coli yeast
8
genes
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!