Ligand binding assays routinely employ fluorescently-labeled protein ligands to quantify the extent of binding. These ligands are commonly generated through chemical modification of accessible lysine residues, which often results in heterogeneous populations exhibiting variable binding properties. This could be remedied by quantitative, site-specific labeling. Recently, we reported on a single-step method integrating recombinant protein purification with 2-cyanobenzothiazole (CBT) condensation for labeling a proteolytically exposed N-terminal cysteine. Here, using three growth factors, we show that unlike random lysine labeling, this site-specific approach yielded homogeneous populations of growth factors that were quantitatively labeled at their N-termini and retained their binding characteristics. We demonstrate the utility of this labeling method through the development of a novel assay that quantifies the capacity of antibodies to block receptor-ligand interactions (i.e. antibody blockade). The assay uses bioluminescence resonance energy transfer (BRET) to detect binding of CBT-labeled growth factors to their cognate receptors genetically fused to NanoLuc luciferase. The ability of antibodies to block these interactions is quantified through decrease in BRET. Using several antibodies, we show that the assay provides reliable quantification of antibody blockade in a cellular context. As demonstrated here, this simple method for generating uniformly-labeled proteins has potential to promote more accurate and robust ligand binding assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504924PMC
http://dx.doi.org/10.1038/s41598-019-43469-zDOI Listing

Publication Analysis

Top Keywords

antibody blockade
12
growth factors
12
simple method
8
ligand binding
8
binding assays
8
antibodies block
8
binding
6
labeling
5
utilizing simple
4
method
4

Similar Publications

CREB3L1 facilitates pancreatic tumor progression and reprograms intratumoral tumor-associated macrophages to shape an immunotherapy-resistance microenvironment.

J Immunother Cancer

January 2025

State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Background: To date, a growing body of evidence suggests that unfolded protein response (UPR) sensors play a vital role in carcinogenesis. However, it remains unclear whether they are involved in pancreatic ductal adenocarcinoma (PDAC) and how they relate to clinical outcomes. This study aims to investigate the biological function and mechanism of how a novel UPR sensor, CREB3L1 works in PDAC and further evaluate its clinical application prospect.

View Article and Find Full Text PDF

Background: Concurrent (STK11, KL) mutant non-small cell lung cancers (NSCLC) do not respond well to current immune checkpoint blockade therapies, however targeting major histocompatibility complex class I-related chain A or B (MICA/B), could pose an alternative therapeutic strategy through activation of natural killer (NK) cells.

Methods: Expression of NK cell activating ligands in NSCLC cell line and patient data were analyzed. Cell surface expression of MICA/B in NSCLC cell lines was determined through flow cytometry while ligand shedding in both patient blood and cell lines was determined through ELISA.

View Article and Find Full Text PDF

Malian field isolates provide insight into Plasmodium malariae intra-erythrocytic development and invasion.

PLoS Negl Trop Dis

January 2025

Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali.

Plasmodium malariae is the third most prevalent human malaria parasite species and contributes significantly to morbidity. Nevertheless, our comprehension of this parasite's biology remains limited, primarily due to its frequent co-infections with other species and the lack of a continuous in vitro culture system. To effectively combat and eliminate this overlooked parasite, it is imperative to acquire a better understanding of this species.

View Article and Find Full Text PDF

Importance: Monoclonal antibodies (mAbs) targeting calcitonin gene-related peptide (CGRP) or its receptor (anti-CGRP mAbs) offer effective migraine-specific preventive treatment. However, concerns exist about their potential cardiovascular risks due to CGRP blockade.

Objective: To compare the incidence of cardiovascular disease (CVD) between Medicare beneficiaries with migraine who initiated anti-CGRP-mAbs vs onabotulinumtoxinA in the US.

View Article and Find Full Text PDF

Despite advances in cancer immunotherapy, such as targeting the PD-1/PD-L1 axis, a substantial number of patients harbor tumors that are resistant or relapse. Selective engagement of T-cell co-stimulatory molecules with bispecific antibodies may offer novel therapeutic options by enhancing signal 1-driven activation occurring via T-cell receptor engagement. In this study, we report the development and preclinical characterization of NI-3201, a PD-L1×CD28 bispecific antibody generated on the κλ-body platform that was designed to promote T-cell activity and antitumor function through a dual mechanism of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!