In birds, vector-borne parasites invading the bloodstream are important agents of disease, affect fitness and shape population viability, thus being of conservation interest. Here, we molecularly identified protozoan blood parasites in two populations of the threatened Aquatic Warbler Acrocephalus paludicola, a migratory passerine nesting in open marsh. We explored whether prevalence and lineage diversity of the parasites vary by population and whether infection status is explained by landscape metrics of habitat edge and individual traits (body mass, fat score, wing length and sex). Aquatic Warblers were infected by genera Plasmodium, Leucocytozoon and Trypanosoma, with seven, one and four lineages, and 29.9, 0.7 and 12.5% prevalence, respectively. No Haemoproteus infections were detected. Prevalence did not vary between the populations, but lineage diversity was higher in Polesie than in Biebrza for all the lineages pooled and for Plasmodium. Infection by Trypanosoma decreased with patch core area and increased with density of habitat edge. Infection status was not predicted by the individual traits. Our study is the first to show an association between edge-related landscape features and blood parasitism in an open habitat bird. This finding will support informed conservation measures for avian species of the globally shrinking marshland and other treeless habitats.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0031182019000350DOI Listing

Publication Analysis

Top Keywords

habitat edge
12
blood parasitism
8
landscape metrics
8
metrics habitat
8
lineage diversity
8
infection status
8
individual traits
8
correlates blood
4
parasitism threatened
4
threatened marshland
4

Similar Publications

Recovery in soil carbon stocks but reduced carbon stabilization after near-natural restoration in degraded alpine meadows.

Sci Rep

December 2024

Grassland Technique Extension Station of Gansu Province, Lanzhou, 730000, Gansu, China.

Near-natural restoration is acknowledged as an effective strategy for enhancing soil organic carbon (SOC) sequestration in degraded grasslands. However, the alterations in SOC fractions, stability, and relative sequestration capacity after restoration of degraded alpine meadows remain uncertain. In this study, we utilized the degraded alpine meadows on the northeastern edge of the Tibetan Plateau as a research area, with grazing as the control (CK) and restoration of 20 years of banned grazing (BG) and growing season resting grazing (RG).

View Article and Find Full Text PDF

Efficient traffic management solutions in 6G communication systems face challenges as the scale of the Internet of Things (IoT) grows. This paper aims to yield an all-inclusive framework ensuring reliable air pollution monitoring throughout smart cities, capitalizing on leading-edge techniques to encourage large coverage, high-accuracy data, and scalability. Dynamic sensors deployed to mobile ad-hoc pieces of fire networking sensors adapt to ambient changes.

View Article and Find Full Text PDF

Ecological Corridors (ECs) are proposed as cost-effective solutions to improve ecological connectivity in fragmented landscapes. Planning the implementation of ECs must take into account landscape features as they affect the viability of the endeavor and the ECs associated costs. A novel set of geoprocessing tools were used to assess (i) economic viability; (ii) socioeconomic cost-effectiveness; and (iii) to determine priority targets for ECs establishment in a highly fragmented region of Atlantic Forest.

View Article and Find Full Text PDF

Anthropogenic and climate factors are increasingly affecting the composition and functions of many marine biogenic reefs globally, leading to a decline in associated biodiversity and ecosystem services. Once dominant ecological component, modern oyster reefs in the Mediterranean and Black Sea and the Atlantic Ocean have already been profoundly altered by overharvesting, habitat loss and the introduction of alien species. Far less known are deep-water oyster reefs, which can however form substantial biogenic structures below 30 m depth.

View Article and Find Full Text PDF

During the study of algal diversity in pyroclastic deposits of the Kamchatka Peninsula, Chlorella-like green algae strains VCA-72 and VCA-93 were isolated from samples collected from along the Baydarnaya river bed on the Shiveluch volcano in 2018 and at the outlet of thermal vapors along the edge of the caldera on the southern slope of the Gorely volcano in 2020. Identification of the strains was carried out within the framework of an integrative approach using microscopic and molecular genetic methods, including preliminary taxon identification, obtaining nucleotide sequences of the small subunit and the internal transcribed spacer rRNA, reconstruction of phylogenetic trees and secondary structures of the ITS1 and ITS2 rRNA regions. On the phylogenetic tree, strain VCA-93 was clustered in the Micractinium thermotolerans species clade.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!