Resilin in the flight apparatus of Odonata (Insecta)-cap tendons and their biomechanical importance for flight.

Biol Lett

Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, D-24118 Kiel , Germany.

Published: May 2019

In Odonata, a direct flight mechanism with specialized tendons evolved. One particular adaptation, the implementation of the rubber-like protein resilin in these cap tendons, might be of major importance. Although resilin was first described in one tendon of Odonata, to our knowledge no comprehensive study about the presence of resilin in the thorax exists yet. We investigated various species of Odonata, using µCT, dissection and fluorescence microscopy. Here we show a complete mapping of the odonatan pterothorax, regarding the presence of tendons and their properties. Thus, 20-21 cap tendons in the pterothorax of Odonata show the presence of resilin. While performing outstanding and often-aggressive flight manoeuvres, resilin can provide shock absorption against mechanical damage from strong impacts. It may further improve the wear and fatigue resistance owing to resilin's damping behaviour. Additionally, resilin in tendons can absorb and return kinetic energy to restore muscles to their original shape after contracting and help in maintaining self-oscillation of the flight muscles. Here, the material distribution within the direct flight system of Odonata and the biomechanical importance and possible function of resilin are discussed. These results are an important step towards the understanding of the complex form-material-function interplay of the insect cuticle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548727PMC
http://dx.doi.org/10.1098/rsbl.2019.0127DOI Listing

Publication Analysis

Top Keywords

resilin
8
direct flight
8
cap tendons
8
presence resilin
8
odonata
6
tendons
6
flight
5
resilin flight
4
flight apparatus
4
apparatus odonata
4

Similar Publications

Biomimetic peptide conjugates as emerging strategies for controlled release from protein-based materials.

Drug Deliv

December 2025

Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles.

View Article and Find Full Text PDF

Resilin, an elastomeric protein with remarkable physical properties that outperforms synthetic rubbers, is a near-ubiquitous feature of the power amplification mechanisms used by jumping insects. Catapult-like mechanisms, which incorporate elastic energy stores formed from a composite of stiff cuticle and resilin, are frequently used by insects to translate slow muscle contractions into rapid-release recoil movements. The precise role of resilin in these jumping mechanisms remains unclear, however.

View Article and Find Full Text PDF

A controlled co-assembly approach to tune temperature responsiveness of biomimetic proteins.

J Mater Chem B

December 2024

Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.

The controlled co-assembly of biomacromolecules through tuneable interactions offers a simple and fascinating opportunity to assemble multiple molecules into a single entity with enhanced complexity and unique properties. Herein, our study presents a dynamic co-assembled system using the multistimuli responsive intrinsically disordered protein Rec1-resilin and the adhesive hydrophilic protein silk sericin (SS). We utilized advanced characterization techniques including circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and small/ultra-small angle neutron scattering (SANS/USANS) to elucidate the detailed co-assembly behavior of the system and its evolution over time and temperature.

View Article and Find Full Text PDF

Functional morphology of cleaning devices in the damselfly (Odonata, Coenagrionidae).

Beilstein J Nanotechnol

October 2024

Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121 Perugia, Italy.

Among the different micro- and nanostructures located on cuticular surfaces, grooming devices represent fundamental tools for insect survival. The present study describes the grooming microstructures of the damselfly (Odonata, Coenagrionidae) at the adult stage. These structures, situated on the foreleg tibiae, were observed using scanning electron microscopy, and the presence and distribution of resilin, an elastomeric protein that enhances cuticle flexibility, were analyzed using confocal laser scanning microscopy.

View Article and Find Full Text PDF

Engineered Protein Fibers with Reinforced Mechanical Properties Via β-Sheet High-Order Assembly.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.

Protein fibers are ideal alternatives to synthetic polymers due to their unique mechanical properties, biocompatibility, and sustainability. However, engineering biomimetic protein fibers with high mechanical properties remains challenging, particularly in mimicking the high molecular weight of natural proteins and regulating their complex hierarchical structures. Here, a modular design and multi-scale assembly strategy is developed to manufacture robust protein fibers using low- or medium-molecular-weight proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!