A phylogenomic rodent tree reveals the repeated evolution of masseter architectures.

Proc Biol Sci

Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA , USA.

Published: May 2019

Understanding the number of times a trait has evolved is a necessary foundation for comprehending its potential relationships with selective regimes, developmental constraints and evolutionary diversification. Rodents make up over 40% of extant mammalian species, and their ecological and evolutionary success has been partially attributed to the increase in biting efficiency that resulted from a forward shift of one or two portions of the masseter muscle from the zygomatic arch onto the rostrum. This forward shift has occurred in three discrete ways, but the number of times it has occurred has never been explicitly quantified. We estimated an ultrametric phylogeny, the first to include all rodent families, using thousands of ultraconserved elements. We examined support for evolutionary relationships among the five rodent suborders and then incorporated relevant fossils, fitted models of character evolution, and used stochastic character mapping to determine that a portion of the masseter muscle has moved forward onto the rostrum at least seven times (with one reversal) during the approximately 70 Myr history of rodents. Combined, the repeated evolution of this key innovation, its increasing prevalence through time, and the species diversity of clades with this character underscores the adaptive value of improved biting efficiency and the relative ease with which some advantageous traits arise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532498PMC
http://dx.doi.org/10.1098/rspb.2019.0672DOI Listing

Publication Analysis

Top Keywords

repeated evolution
8
number times
8
biting efficiency
8
forward shift
8
masseter muscle
8
phylogenomic rodent
4
rodent tree
4
tree reveals
4
reveals repeated
4
evolution masseter
4

Similar Publications

Morphological Evolution and Extinction of Eodiscids and Agnostoid Arthropods.

Life (Basel)

December 2024

State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, China.

The temporal range of eodiscids and agnostoid arthropods overlaps with several early Paleozoic geological events of evolutionary significance. However, the responses of agnostids to these events and how the perturbations associated with them (both abiotic and/or biotic) may have impacted agnostids remain uncertain. To address this uncertainty, we employ geometric morphometrics to reconstruct morphospace occupation for agnostids, thereby elucidating their evolutionary response to geological events during the early Paleozoic.

View Article and Find Full Text PDF

Dry-fermented sausages are appreciated all over the world for their sensory characteristics. Carbohydrates (sugars) are added during the production process, the type and quantity of which directly affect the quality of this product. However, there are few data on the role of sugars on instrumental and sensory parameters of sausages derived from Iberian pork.

View Article and Find Full Text PDF

Obligatory parthenogenesis in vertebrates is restricted to squamate reptiles and evolved through hybridisation. Parthenogens can hybridise with sexual species, resulting in individuals with increased ploidy levels. We describe two successive hybridisations of the parthenogenetic butterfly lizards (genus Leiolepis) in Vietnam with a parental sexual species.

View Article and Find Full Text PDF

Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events.

View Article and Find Full Text PDF

Convergent evolution, the evolution of the same or similar phenotypes in phylogenetically independent lineages, is a widespread phenomenon in nature. If the genetic basis for convergent evolution is predictable to some extent, it may be possible to infer organismic phenotypes and the capability of organisms to utilize new ecological resources based on genome sequence data. While repeated amino acid changes have been studied in association with convergent evolution, relatively little is known about the potential contribution of repeated gene copy number changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!