Dietary factors such as adenine have been linked to phosphate-calcium metabolism disturbance and adverse productive outcomes. Anti-fibroblast growth factor 23 (FGF-23) antibody has been proposed to ameliorate adenine-induced abnormal FGF23/phosphate metabolism. This experiment was conducted to investigate the application of anti-FGF-23 antibody in adenine-gavaged laying hens. Single Comb White Leghorn laying hens with (n = 10) or without (control group, n = 10) systemic anti-FGF-23 antibody were orally gavaged with adenine (600 mg/hen/D) for 21 consecutive days. Adenine gavage increased (P ≤ 0.01) plasma phosphate and calcium levels and tended to increase (0.05 < P ≤ 0.1) plasma 1,25-dihydroxy-cholecalciferol [1,25(OH)2D3] level of hens without FGF-23 antibody. In hen with anti-FGF-23 antibody, adenine gavage increased (P ≤ 0.01) body weight and plasma calcium level and decreased (P ≤ 0.05) plasma FGF-23 level. Feed intake of hens in both treatments was suddenly decreased (control hens decreased from 111 to 55 g, P ≤ 0.01; anti-FGF-23 hens decreased from 96 to 46 g, P ≤ 0.01) 10 D after adenine gavage. Anti-FGF-23 antibody tended to increase (0.05 < P ≤ 0.1) plasma phosphorus level of hens before adenine gavage, interestingly, and decreased (P ≤ 0.01) plasma FGF-23 level and kidney index (% of body weight) of hens after adenine gavage. In conclusion, anti-FGF-23 antibody might be used (before or in the early stage) to delay the development of adenine-induced abnormal FGF23/phosphate metabolism. This is the first study to investigate the FGF-23 status in chickens suffering from dietary factors which may cause abnormal renal phosphate resorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3382/ps/pez239 | DOI Listing |
Osteoporos Int
January 2023
Department of Rheumatology, ASST-Pini-CTO, Milan, Italy.
Unlabelled: Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by tumoral overproduction of FGF-23. Due to local recurrence, we describe the long-term efficacy and safety profile of burosumab, an anti-FGF-23 monoclonal antibody, in a TIO patient after three unsuccessfully surgical attempts.
Introduction: TIO is a rare paraneoplastic syndrome caused by tumoral overproduction of fibroblast growth factor 23 (FGF23), resulting in hyperphospaturia, hypophosphatemia, and osteomalacia.
Internist (Berl)
May 2021
Orthopädisches Zentrum für Muskuloskeletale Forschung, Universität Würzburg, Brettreichstr. 11, 97074, Würzburg, Deutschland.
Delineating the genetic background and the underlying pathophysiology of rare skeletal dysplasias enables a broader understanding of these disorders as well as novel perspectives regarding differential diagnosis and targeted development of therapeutic approaches. Hypophosphatasia (HPP) due to genetically determined Alkaline Phosphatase deficiency exemplifies this development. While an enzyme replacement therapy could be established for severe HPP with the prevailing bone manifestation, the clinical impact of not immediately bone-related manifestations just being successively understood.
View Article and Find Full Text PDFPoult Sci
October 2019
Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA.
Dietary factors such as adenine have been linked to phosphate-calcium metabolism disturbance and adverse productive outcomes. Anti-fibroblast growth factor 23 (FGF-23) antibody has been proposed to ameliorate adenine-induced abnormal FGF23/phosphate metabolism. This experiment was conducted to investigate the application of anti-FGF-23 antibody in adenine-gavaged laying hens.
View Article and Find Full Text PDFPoult Sci
May 2017
Department of Animal Sciences, 1675 Observatory Drive, University of Wisconsin-Madison 53706.
Phytase hydrolyzes phytate rendering phosphorus available for intestinal absorption, while systemic neutralization of fibroblast growth factor 23 (FGF-23), using anti-FGF-23 antibody, has been shown to increase phosphate retention. Hence, neutralization of FGF-23 should be additive with phytase in reducing dietary non-phytate phosphorus (nPP) needs in chickens fed plant-based diets rich in phytic acid. This study was designed to test the additive effects of maternally derived anti-FGF-23 antibody and dietary phytase on the performance of chicks fed a low nPP diet from one to 14 d.
View Article and Find Full Text PDFPoult Sci
April 2017
Department of Animal Sciences, 1675 Observatory Drive, University of Wisconsin-Madison, Madison, WI 53706, USA.
Novel means to reduce phosphate input into poultry feeds and increase its retention would preserve world phosphate reserves and reduce environmental impact of poultry production. Here we show that a maternally derived antibody to a fibroblast growth factor-23 (FGF-23) peptide (GMNPPPYS) alleviated phosphorus deficiency in chicks fed low non-phytate phosphorus (nPP) diets. White Leghorn laying hens were vaccinated with either an adjuvant control or the synthetic FGF-23 peptide, and chicks with control or anti-FGF-23 maternal antibodies were fed a diet containing either 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!