A controllable and flexible route is presented for the fabrication of Ag-nanosheets-built micro/nanostructural ordered arrays via in situ conversion on the CuO-coated silicon nanocone (SNC) platform in the AgNO-contained solution. The platform is pre-prepared by the reactive ion etching of the organic colloidal monolayer-covered silicon wafer, Cu sputtering deposition and in situ oxidation. The obtained Ag micro/nanostructured array consists of nearly spherical and micro-sized particles, which are hexagonally arranged on the substrate. The spherical particles are built of the vertically standing and cross-linked nanosheets with about 30 nm in thickness. This Ag-nanosheets-built array shows high number density of the edges and nanogaps as well as the robust and homogeneous structure. Its formation is attributed to the in situ conversion reaction on the CuO-coated SNC platform and the preferentially-oriented connection of Ag nanoparticles. Such Ag array has shown significantly higher surface enhanced Raman scattering (SERS) activity than the Ag nanoparticles' film-covered SNC array, with the enhancement factor up to 10 and the detection limitation down to ∼1 ppt level to the test molecules 4-aminothiophenol, as well as the good reproducibility in measurements. This study not only presents a controllable and flexible fabrication route to the plasmonic micro/nanostructured arrays but also provides the highly efficient and the practical chips for the SERS-based devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab1f98 | DOI Listing |
J Colloid Interface Sci
January 2025
Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China. Electronic address:
The electrochemical activation and partial oxidation of methane are highly attractive to enable the direct conversion in a sustainable and decentralized way. Herein, we report an electrochemical system in a non-diaphragm electrochemical bath to convert CH to CHOH and CHCHOH at room temperature, in which VO·HO as the anodic catalyst to activate CH and an aprotic ionic liquid [BMIM]BF as supporting electrolyte to control superoxide radicals (O) as the main active oxygen species generated on cathode. As a result, methanol and ethanol were identified as the liquid products, and the superior methanol Faraday efficiency (FE) of 32.
View Article and Find Full Text PDFEnviron Res
January 2025
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China. Electronic address:
Hydrogen sulfide (HS) is a major air pollutant posing a serious threat to both the environment and public health. In this study, a novel nitrogen-rich biocarbon that effectively removes HS was produced from a mixture of sewage sludge and pine sawdust using melamine as nitrogen source. Compared with pristine biocarbons, nitrogen (N)-doped biocarbons possessed an adjustable porosity, e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
Developing high-energy-density lithium-sulfur batteries faces serious polysulfide shuttle effects and sluggish conversion kinetics, often necessitating the excessive use of electrolytes, which in turn adversely affects battery performance. Our study introduces a meticulously designed electrocatalyst, Cu-CeO@N/C, to enhance lean-electrolyte lithium-sulfur battery performance. This catalyst, featuring in situ synthesized Cu clusters, regulates oxygen vacancies in CeO and forms Cu-CeO heterojunctions, thereby diminishing sulfur conversion barriers and hastening reaction kinetics through the generation of S/S intermediates.
View Article and Find Full Text PDFSmall
January 2025
Department of Thyroid Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China.
Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China.
Cemented Sand, Gravel, and Rock (CSGR) dams have traditionally used either Conventional Vibrated Concrete (CVC) or Grout-Enriched Roller Compacted Concrete (GERCC) for protective and seepage control layers in low- to medium-height dams. However, these methods are complex, prone to interference, and uneconomical due to significant differences in the expansion coefficient, elastic modulus, and hydration heat parameters among CSGR, CVC, and GERCC. This complexity complicates quality control during construction, leading to the development of Grout-Enriched Vibrated Cemented Sand, Gravel, and Rock (GECSGR) as an alternative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!