Photomontage detection using steganography technique based on a neural network.

Neural Netw

University of Ostrava, Department of Informatics and Computers, 30. dubna 22, 70103, Ostrava, Czech Republic. Electronic address:

Published: August 2019

This article presents a steganographic method StegoNN based on neural networks. The method is able to identify a photomontage from presented signed images. Unlike other academic approaches using neural networks primarily as classifiers, the StegoNN method uses the characteristics of neural networks to create suitable attributes which are then necessary for subsequent detection of modified photographs. This also results in a fact that if an image is signed by this technique, the detection of modifications does not need any external data (database of non-modified originals) and the quality of the signature in various parts of the image also serves to identify modified (corrupted) parts of the image. The experimental study was performed on photographs from CoMoFoD Database and its results were compared with other approaches using this database based on standard metrics. The performed study showed the ability of the StegoNN method to detect corrupted parts of an image and to mark places which have been most probably image-manipulated. The usage of this method is suitable for reportage photography, but in general, for all cases where verification (provability) of authenticity and veracity of the presented image are required.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2019.03.015DOI Listing

Publication Analysis

Top Keywords

neural networks
12
parts image
12
based neural
8
stegonn method
8
corrupted parts
8
method
5
image
5
photomontage detection
4
detection steganography
4
steganography technique
4

Similar Publications

Background: Complete Cytoreduction (CC) in ovarian cancer (OC) has been associated with better outcomes. Outcomes after CC have a multifactorial and interrelated cause that may not be predictable by conventional statistical methods. Artificial intelligence (AI) may be more accurate in predicting outcomes.

View Article and Find Full Text PDF

The facial gestalt (overall facial morphology) is a characteristic clinical feature in many genetic disorders that is often essential for suspecting and establishing a specific diagnosis. Therefore, publishing images of individuals affected by pathogenic variants in disease-associated genes has been an important part of scientific communication. Furthermore, medical imaging data is also crucial for teaching and training deep-learning models such as GestaltMatcher.

View Article and Find Full Text PDF

Deep learning classification models based on Convolutional Neural Networks (CNNs) are increasingly used in population genetic inference for detecting signatures of natural selection. Prevailing detection methods treat the design of the classifier as a discrete phase, assuming that high classification accuracy is the sole prerequisite for precise detection. This frequently steers method development toward classification-driven optimizations that can inadvertently impede detection.

View Article and Find Full Text PDF

To decrease the number of chronic kidney disease (CKD), early diagnosis of diabetic kidney disease is required. We performed invariant information clustering (IIC)-based clustering on glomerular images obtained from nephrectomized kidneys of patients with and without diabetes. We also used visualizing techniques (gradient-weighted class activation mapping (Grad-CAM) and generative adversarial networks (GAN)) to identify the novel and early pathological changes on light microscopy in diabetic nephropathy.

View Article and Find Full Text PDF

Nailfold Capillaroscopy (NFC) is a simple, non-invasive diagnostic tool used to detect microvascular changes in nailfold. Chronic pathological changes associated with a wide range of systemic diseases, such as diabetes, cardiovascular disorders, and rheumatological conditions like systemic sclerosis, can manifest as observable microvascular changes in the terminal capillaries of nailfolds. The current gold standard relies on experts performing manual evaluations, which is an exhaustive time-intensive, and subjective process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!