CGRtools is an open-source Python library aimed to handle molecular and reaction information. It is the sole library developed so far which can process condensed graph of reaction (CGR) handling. CGR provides the possibility for advanced operations with reaction information and could be used for reaction descriptor calculation, structure-reactivity modeling, atom-to-atom mapping comparison and correction, reaction center extraction, reaction balancing, and some other related tasks. Unlike other popular libraries, CGRtools is fully written in Python with minor dependencies on other libraries and cross-platform. Reaction, molecule, and CGR objects in CGRtools support native Python methods and are comparable with the help of operations "equal to", "less than", and "bigger than". CGRtools supports common structural formats. CGRtools is distributed via an L-GPL license and available on https://github.com/cimm-kzn/CGRtools .

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.9b00102DOI Listing

Publication Analysis

Top Keywords

reaction
9
python library
8
condensed graph
8
graph reaction
8
cgrtools
6
cgrtools python
4
library molecule
4
molecule reaction
4
reaction condensed
4
reaction processing
4

Similar Publications

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

Grouping of chemicals has been proposed as a strategy to speed up the screening and identification of potential substances of concern among the broad chemical universe under REACH. Such grouping is usually based on shared structural features and should only be used for the prioritization objectives. However, additional considerations (as well as structural similarity) are needed, e.

View Article and Find Full Text PDF

An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy.

Commun Chem

January 2025

Energy & Materials Transition, Netherlands Organization for Applied Scientific Research (TNO), Urmonderbaan 22, Geleen, 6167RD, The Netherlands.

Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis.

View Article and Find Full Text PDF

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract.

Nat Prod Bioprospect

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina.

Chemically engineered extracts represent a promising source of new bioactive semi-synthetic molecules. Prepared through direct derivatization of natural extracts, they can include constituents enriched with elements and sub-structures that are less common in natural products compared to drugs. Fourteen such extracts were prepared through sequential reactions with hydrazine and a fluorinating reagent, and their α-glucosidase inhibition properties were compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!