Conformal hydrolysis of MOF precursors is a promising strategy to prepare hierarchical metal hydroxide electrode materials on a large scale with low cost and high efficiency. However, a complete transformation is challenging due to the normal "outside-in" conversion process. After studying the hydrolysis of Ni-MOF-74, which has regular 1D channels, we suggest that the transformation to Ni(OH)2 can occur simultaneously outside and within the precursor depending on the treatment temperature. Molecular dynamics simulations reveal that a higher temperature weakens the steric effects of OH- ions and facilitates the diffusion in the regular channels, and therefore, a complete transformation from Ni-MOF-74 to Ni(OH)2 is achieved. It is for the first time demonstrated that the 1D channels of MOFs are utilized for the complete conformal hydrolysis of Ni-MOF-74 to Ni(OH)2 electrode materials. Meanwhile, we also perform pioneering work illustrating that the complete conformal hydrolysis is the key to the improved supercapacitor performances of the MOF-derived Ni(OH)2 electrodes. The prepared Ni(OH)2 electrode under the optimized conditions has a specific capacity of 713.2 C g-1 at a current density of 1 A g-1, which is at least 28% larger than those of the Ni(OH)2 prepared at other temperatures. The detailed analyses based on CV and EIS of the obtained Ni(OH)2 electrodes indicate that the residual MOFs within electrodes due to incomplete hydrolysis significantly influence the diffusion length and diffusion efficiency of OH-, drastically lowering the supercapacitor performances.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr02555cDOI Listing

Publication Analysis

Top Keywords

conformal hydrolysis
16
complete conformal
12
electrode materials
8
complete transformation
8
hydrolysis ni-mof-74
8
regular channels
8
ni-mof-74 nioh2
8
nioh2 electrode
8
supercapacitor performances
8
nioh2 electrodes
8

Similar Publications

Data-Driven Equation-Free Dynamics Applied to Many-Protein Complexes: The Microtubule Tip Relaxation.

Biophys J

January 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States. Electronic address:

Microtubules (MTs) constitute the largest components of the eukaryotic cytoskeleton and play crucial roles in various cellular processes, including mitosis and intracellular transport. The property allowing MTs to cater to such diverse roles is attributed to dynamic instability, which is coupled to the hydrolysis of GTP (guanosine-5'-triphosphate) to GDP (guanosine-5'-diphosphate) within the β-tubulin monomers. Understanding the equilibrium dynamics and the structural features of both GDP- and GTP-complexed MT tips, especially at an all-atom level, remains challenging for both experimental and computational methods because of their dynamic nature and the prohibitive computational demands of simulating large, many-protein systems.

View Article and Find Full Text PDF

Background: Megalobrama amblycephala presents unsynchronized growth, which affects its productivity and profitability. The liver is essential for substance exchange and energy metabolism, significantly influencing the growth of fish.

Results: To investigate the differential metabolites and genes governing growth, and understand the mechanism underlying their unsynchronized growth, we conducted comprehensive transcriptomic and metabolomic analyses of liver from fast-growing (FG) and slow-growing (SG) M.

View Article and Find Full Text PDF

Elucidating on the Quaternary Structure of Viper Venom Phospholipase A Enzymes in Aqueous Solution.

Biochimie

January 2025

LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. Electronic address:

This study focuses on the quaternary structure of the viper-secreted phospholipase A (PLA), a central toxin in viper envenomation. PLA enzymes catalyse the hydrolysis of the sn-2 ester bond of membrane phospholipids. Small-molecule inhibitors that act as snakebite antidotes, such as varespladib, are currently in clinical trials.

View Article and Find Full Text PDF

Changes of shrimp myofibrillar proteins hydrolyzed by Virgibacillus proteases: Structural characterization, mechanism visualization, and flavor compound formation.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 31200, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing 646000, Zhejiang, China. Electronic address:

To explore the mechanism of Virgibacillus proteases on hydrolysis of shrimp myofibrillar protein (SMP) and formation of volatile compounds, the fermented broth of Virgibacillus halodenitrificans was purified and the protease was identified as peptidase S8. The enzyme had optimum activity at pH 7.0-8.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) endonucleases are key enzymes responsible for the repair of base-less nucleotides generated by spontaneous hydrolysis or as DNA repair intermediates. APE1, the major human AP endonuclease, is a druggable target in cancer and its biological function has been extensively studied. However, the molecular features responsible for its substrate specificity are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!