Synthesis of volatile, reactive coinage metal 5,5-bicyclic amidinates with enhanced thermal stability for chemical vapor deposition.

Dalton Trans

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. and Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

Published: May 2019

Many microelectronic devices require thin films of silver or gold as wiring layers. We report silver(i) and gold(i) bicyclic amidinate complexes, wherein the constrained ligand geometry lessens the propensity for thermal decomposition. These new volatile compounds provide metallic films of silver and gold during CVD with hydrogen below 230 °C.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt01202hDOI Listing

Publication Analysis

Top Keywords

films silver
8
silver gold
8
synthesis volatile
4
volatile reactive
4
reactive coinage
4
coinage metal
4
metal 55-bicyclic
4
55-bicyclic amidinates
4
amidinates enhanced
4
enhanced thermal
4

Similar Publications

In the present investigation, the formulation and thorough assessment of biodegradable composite films were conducted, utilizing pectin extracted from banana peel in conjunction with synthesized silver zeolite nanoparticles. The evaluation of physical properties, microstructural investigation, mechanical characteristics, and barrier properties was done providing valuable insights into various attributes of the film. The amalgamation of silver zeolite nanoparticles with the extracted pectin from banana peel results in biodegradable composite films exhibiting distinct physical, mechanical, barrier, and thermal properties.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Reactive template method for synthesis of water-soluble fluorescent silver nanoclusters supported on the surface of cellulose nanofibers.

Carbohydr Polym

March 2025

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.

There is an emerging quest for fabrication of water-soluble fluorescent silver nanoclusters (AgNCs) with long-lasting fluorescent properties and dimensional stability while being sustainable and functional. Thus, a well-known seed-mediated growth strategy has been developed to manufacture AgNCs supported onto carboxyl and aldehyde modified cellulose nanofiber (DATCNF) with ultra-small and intense fluorescence. The DATCNF acts as a reductant, template, and stabilizer while the protective ligand, 2-Mercaptonicotinic Acid (2-HMA), provides AgNCs with luminous characteristic and constrained size of 4.

View Article and Find Full Text PDF

Opto-Laser-Responsive Smart NanoGel with Mild Hyperthermia, Vascularization, and Anti-Inflammatory Potential for Boosting Hard-to-Heal Wounds in a Diabetic Mice Model.

Mol Pharm

January 2025

An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India.

It is well known that impaired wound healing associated with diabetes mellitus has led to a challenging problem as well as a global economic healthcare burden. Conventional wound care therapies like films, gauze, and bandages fail to cure diabetic wounds, thereby demanding a synergistic and promising wound care therapy. This investigation aimed to develop a novel, greener synthesis of a laser-responsive silver nanocolloid (LR-SNC) prepared using hyaluronic acid as a bioreductant.

View Article and Find Full Text PDF

Preparation, characterization, and antibacterial application of cross-linked nanoparticles composite films.

Food Chem X

January 2025

Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.

This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1-3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!