Proline is often found as a turn inducer in peptide or protein domains. Exploitation of its restricted conformational freedom led to the development of the d-Pro-l-Pro (corresponding to (R)-Pro-(S)-Pro) segment as a "templating" unit, frequently used in the design of β-hairpin peptidomimetics, in which conformational stability is, however, inherently linked to the cis-trans isomerization of the prolyl amide bonds. In this context, the stereoelectronic properties of the CF group can aid in conformational control. Herein, the impact of α-trifluoromethylated proline analogues is examined for the design of enhanced β-turn inducers. A theoretical conformational study permitted the dipeptide (R)-Pro-(R)-TfmOxa (TfmOxa: 2-trifluoromethyloxazolidine-2-carboxylic acid) to be selected as a template with an increased trans-cis rotational energy barrier. NMR spectroscopic analysis of the Ac-(R)-Pro-(R)-TfmOxa-(S)-Val-OtBu β-turn model, obtained through an original synthetic pathway, validated the prevalence of a major trans-trans conformer and indicated the presence of an internal hydrogen bond. Altogether, it was shown that the (R)-Pro-(R)-TfmOxa template fulfilled all crucial β-turn-inducer criteria.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201900294DOI Listing

Publication Analysis

Top Keywords

trifluoromethylated proline
4
proline surrogates
4
surrogates "pro-pro"
4
"pro-pro" turn-inducing
4
turn-inducing templates
4
templates proline
4
proline turn
4
turn inducer
4
inducer peptide
4
peptide protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!