Reconstructing Gene Regulatory Networks That Control Hematopoietic Commitment.

Methods Mol Biol

Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.

Published: September 2019

Hematopoietic stem cells (HSCs) reside at the apex of the hematopoietic hierarchy, possessing the ability to self-renew and differentiate toward all mature blood lineages. Along with more specialized progenitor cells, HSCs have an essential role in maintaining a healthy blood system. Incorrect regulation of cell fate decisions in stem/progenitor cells can lead to an imbalance of mature blood cell populations-a situation seen in diseases such as leukemia. Transcription factors, acting as part of complex regulatory networks, are known to play an important role in regulating hematopoietic cell fate decisions. Yet, discovering the interactions present in these networks remains a big challenge. Here, we discuss a computational method that uses single-cell gene expression data to reconstruct Boolean gene regulatory network models and show how this technique can be applied to enhance our understanding of transcriptional regulation in hematopoiesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9224-9_11DOI Listing

Publication Analysis

Top Keywords

gene regulatory
8
regulatory networks
8
cells hscs
8
mature blood
8
cell fate
8
fate decisions
8
reconstructing gene
4
networks control
4
hematopoietic
4
control hematopoietic
4

Similar Publications

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds.

Clin Transl Oncol

January 2025

Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.

Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.

View Article and Find Full Text PDF

The MADS-RIPENING INHIBITOR-DIVARICATA1 module regulates carotenoid biosynthesis in nonclimacteric Capsicum fruits.

Plant Physiol

January 2025

Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China.

Carotenoids play indispensable roles in the ripening process of fleshy fruits. Capsanthin is a widely distributed and utilized natural red carotenoid. However, the regulatory genes involved in capsanthin biosynthesis remain insufficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!