Proinflammatory and anti-inflammatory cytokine profiles in psoriasis: use as laboratory biomarkers and disease predictors.

Inflamm Res

Laboratory of Research in Applied Immunology, Department of Pathology, Clinical Analysis and Toxicology, University of Londrina, Rua Robert Koch, n 60, Londrina, Paraná, 86038-440, Brazil.

Published: July 2019

Objective: The objectives of this study were to delineate the pro and anti-inflammatory cytokine profiles of psoriasis and cytokine profile models that externally validate the diagnosis.

Subjects And Methods: This study recruited 70 patients with psoriasis and 76 healthy controls. Cytokine profiles were evaluated, including pro-inflammatory M1 (IL-1 + IL-6 + TNF-α), Th1 (IL-2 + IL-12 + IFN-γ), Th17 (IL-6 + IL-17), and immune-inflammatory response system (IRS = M1 + Th1 + Th17) profiles. Moreover, the anti-inflammatory potential included Th2 (IL-4), Th2 + T regulatory (Th2 + Treg, namely IL-4 + IL-10 + TGF-β), anti-inflammatory (Th2 + Treg + adiponectin), and the pro-inflammatory/anti-inflammatory index.

Results: There was a highly significant association between psoriasis and cytokine levels with an effect size of 0.829 and a particularly strong impact on IL-2 (0.463), IL-12 (0.451), IL-10 (0.532) and adiponectin (0.401). TGF-β and adiponectin were significantly lower while all other cytokines (except IFN-γ) were significantly higher in psoriasis than in controls. In addition, M1, Th1, Th17, Th2 + Treg, and IRS/Anti-inflammatory index were significantly higher in psoriasis patients than in controls. The IRS index, Th2 + Treg, and adiponectin predicted psoriasis with 97.1% sensitivity and 94% specificity.

Conclusion: In conclusion, psoriasis is characterized by increased M1, Th1, Th2 and Th17 profiles together with lowered TGF-β and adiponectin. In addition, we propose a model based on a higher IRS and Th2 + Treg index coupled with lower adiponectin values, which may be used to externally validate the diagnosis of psoriasis. The most important single biomarker of psoriasis is adiponectin. Because the latter may play a role in the modulation of the chronic inflammatory response in psoriasis, adiponectin could be a new drug target to treat psoriasis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00011-019-01238-8DOI Listing

Publication Analysis

Top Keywords

cytokine profiles
12
psoriasis
12
anti-inflammatory cytokine
8
profiles psoriasis
8
psoriasis cytokine
8
externally validate
8
tgf-β adiponectin
8
higher psoriasis
8
irs th2 + treg
8
psoriasis adiponectin
8

Similar Publications

Superior persistence of ustekinumab compared to anti-TNF in vedolizumab-experienced inflammatory bowel diseases patients: a real-world cohort study.

BMC Gastroenterol

December 2024

Department of Gastroenterology and Hepatology, Linkou Branch, Chang Gung Memorial Hospital, 5, Fu-Hsin Street, Guei-Shan District, Taoyuan, 33305, Taiwan.

Background/aims: The increasing use of biologic therapies for moderate to severe inflammatory bowel disease (IBD) highlights the importance of optimal treatment sequencing, particularly after vedolizumab (VDZ) exposure. Studies comparing the effectiveness of ustekinumab (UST) and antitumor necrosis factor (anti-TNF) agents post-VDZ are limited.

Methods: This retrospective study analyzed VDZ-experienced IBD patients treated with UST or anti-TNF (adalimumab and infliximab) from May 2019 to January 2024.

View Article and Find Full Text PDF

Sertaconazole, an Imidazole Antifungal Agent, Suppresses the Stemness of Breast Cancer Cells by Inhibiting Stat3 Signaling.

In Vivo

December 2024

Graduate Program for Bio-health/Innovative Drug Development using Subtropical Bio-Resources, Jeju National University, Jeju, Republic of Korea;

Background/aim: Breast cancer stem cells (BCSCs) are a subpopulation of tumor cells that play a role in therapeutic resistance. In this study, we demonstrated that sertaconazole, an antifungal agent, displayed a potent inhibition on cancer stem cells (CSCs) and investigated the mechanism of action involved in its anti-BCSC effect.

Materials And Methods: The effect of sertaconazole on BCSCs was investigated using a mammosphere formation assay, a colony formation assay, and a cell migration assay.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF) is a biomarker of inflammation whose levels are elevated in patients with several diseases associated with dysregulation of the immune response. The main limitations of currently used anti-TNF therapies are the induction of immunodepression, which in many cases leads to serious adverse effects such as infection and cancer, and the inability to cross the blood-brain barrier in neuroinflammatory conditions. Melatonin, in addition to being a chronobiotic compound, is widely known for its antioxidant and immunomodulatory capacity to control inflammatory processes in different pathological contexts.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been associated with systemic inflammation and vascular injury, which contribute to the development of acute respiratory syndrome (ARDS) and the mortality of COVID-19 infection. Moreover, multiorgan complications due to persistent endothelial dysfunction have been suspected as the cause of post-acute sequelae of SARS-CoV-2 infection. Therefore, elucidation of the vascular inflammatory effect of SARS-CoV-2 will increase our understanding of how endothelial cells (ECs) contribute to the short- and long-term consequences of SARS-CoV-2 infection.

View Article and Find Full Text PDF

Exposure to diesel exhaust is associated with increased risk of cardiovascular and lung disease. Substituting petroleum diesel with renewable diesel can alter emission properties but the potential health effects remain unclear. This study aimed to explore toxicity and underlying mechanisms of diesel exhaust from renewable fuels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!