The catalytic activity of snowman-like and core-shell FeO/Au nanoparticles (NPs), obtained through a "wet chemistry" approach which directly restitutes nanocatalysts stable and highly active in the reaction medium, was tested towards N-alkylation reactions. The nanocatalysts were tested for the synthesis of secondary amines. The core-shell NPs, thanks to the surface properties, homogeneous dispersion and intimate connection with reagents in the catalyst medium, exhibited an excellent catalytic activity (e. g. >99 % yield and conversion of aniline in very short time and mild conditions). Owing to the magnetic part, the nanoparticles can be easily separated and reused, showing an almost stable activity after 10 cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488208 | PMC |
http://dx.doi.org/10.1002/open.201900104 | DOI Listing |
Molecules
December 2024
Chengdu Shibeikang Biomedical Technlogy Co., Ltd., 26-1-2, No.2 Tianyu Road, Chendu Gaoxin West District, Chengdu 611700, China.
A new process route suitable for the industrial production of BAY2433334 has been developed in this paper, which avoids the patent limitations of the originator company of BAY2433334 to the preparation of BAY2433334. BAY2433334 is obtained from (2)-2-aminobutyric acid by esterification, diazotization, condensation reactions, deacetyl deprotection, activation reactions, and Mitsunobu reactions. This method is simple to operate, and the raw materials are inexpensive and readily available.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala 686 560, India.
-Alkylation of amines is a vital reaction in the synthesis of numerous bioactive compounds and materials. Among transition metals, palladium has emerged as a particularly effective catalyst for these transformations. The unique advantages of palladium arise from its superior catalytic efficiency, ability to operate under mild conditions, high selectivity and recyclability.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India.
The development of efficient and robust catalytic systems based on earth-abundant transition metals for fundamentally new transformations is crucial for sustainable chemical synthesis. Herein, an effective and selective Ni-catalyzed dehydrogenative coupling of alcohols with hydrazines with the liberation of ammonia gas is reported. Although several methods were documented for the -alkylation reaction, the present strategy is conceptually novel, and the reaction proceeds through a pathway involving N-N bond cleavage of phenylhydrazine followed by hydrogen autotransfer.
View Article and Find Full Text PDFJ Org Chem
December 2024
College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
An unprecedented, transition metal-free -alkylation of disulfides with alkyl halides is developed for the first time, providing an efficient and green synthesis of thioethers and even thioesters. Notably, this new method allows the full utilization of both sulfur atoms of disulfides under chemical reductant-free conditions and can be easily scaled up in gram scale, showing good practical value. Control experiments suggested that water, unprecedentedly, serves as the terminal reductant of the whole reaction.
View Article and Find Full Text PDFNat Commun
November 2024
State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China.
Hydroxybenzylamines are prevalent in drugs and bioactive molecules, including various antimalarial and anticancer drugs. α-tertiary alkylation of amines impacts drug-target interactions significantly through their influence on basicity and lipophilicity. Traditional N-alkylation methods, especially for α-tertiary amines, suffer from limitations due to high energy barriers from steric hindrance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!