Covalent linkage of bacterial voltage-gated sodium channels.

BMC Biophys

1Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ UK.

Published: April 2019

Background: Bacterial sodium channels are important models for understanding ion permeation and selectivity. However, their homotetrameric structure limits their use as models for understanding the more complex eukaryotic voltage-gated sodium channels (which have a pseudo-heterotetrameric structure formed from an oligomer composed of four domains). To bridge this gap we attempted to synthesise oligomers made from four covalently linked bacterial sodium channel monomers and thus resembling their eukaryotic counterparts.

Results: Western blot analyses revealed NaChBac oligomers to be inherently unstable whereas intact expression of NavMs oligomers was possible. Immunodectection using confocal microscopy and electrophysiological characterisation of NavMs tetramers confirmed plasma membrane localisation and equivalent functionality with wild type NavMs channels when expressed in human embryonic kidney cells.

Conclusion: This study has generated new tools for the investigation of eukaryotic channels. The successful covalent linkage of four bacterial Nav channel monomers should permit the introduction of radial asymmetry into the structure of bacterial Nav channels and enable the known structures of these channels to be used to gain unique insights into structure-function relationships of their eukaryotic counterparts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487023PMC
http://dx.doi.org/10.1186/s13628-019-0049-5DOI Listing

Publication Analysis

Top Keywords

sodium channels
12
covalent linkage
8
linkage bacterial
8
voltage-gated sodium
8
bacterial sodium
8
models understanding
8
channel monomers
8
bacterial nav
8
channels
7
bacterial
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!