1,2,3,4,5-Pentacarbomethoxycyclopentadiene (PCCP) is a strong organic acid and a precursor to useful organocatalysts, including chiral Brønsted acids and silicon-based Lewis acids. The synthetic route to PCCP, first reported in 1942, is inconvenient for a number of reasons. The two-step synthesis requires the purification of intermediates from intractable side-products, high reaction temperatures, and extensive labor (3 days). We have developed an improved procedure that delivers PCCP efficiently in 24 hours in one pot at ambient temperature and without isolation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6498842 | PMC |
http://dx.doi.org/10.1055/s-0037-1611650 | DOI Listing |
Org Biomol Chem
January 2025
Institute of Condensed Matter and Nanosciences, Molecules Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Bâtiment Lavoisier, Pl. Louis Pasteur, 1, bte 3. 1348, Louvain La Neuve, Belgium.
The present study describes the use of the di--butyl dicarbonate (BocO)/4-(,-dimethylamino)pyridine (DMAP) system for the amidation of carboxylic acids under neat conditions without heating. A set of carboxylic acids was explored, such as non-steroidal anti-inflammatory drugs (NSAIDs), fatty acids and protected prolines in the presence of aromatic, benzylic and aliphatic amines as nucleophilic partners. The scope of this easy approach was extended to the preparation of thirty-two diverse carboxylic amides, which were recovered with isolated yields varying from moderate to excellent.
View Article and Find Full Text PDFGels
January 2025
Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX 77204, USA.
Stimuli-responsive hydrogels hold immense promise for biomedical applications, but conventional gelation processes often struggle to achieve the precision and complexity required for advanced functionalities such as soft robotics, targeted drug delivery, and tissue engineering. This study introduces a class of 3D-printable magnetic hydrogels with tunable stiffness, adhesion, and magnetic responsiveness, prepared through a simple and efficient "one-pot" method. This approach enables precise control over the hydrogel's mechanical properties, with an elastic modulus ranging from 43 kPa to 277 kPa, tensile strength from 93 kPa to 421 kPa, and toughness from 243 kJ/m to 1400 kJ/m, achieved by modulating the concentrations of acrylamide (AM) and FeO nanoparticles.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.
Biogenic-based foam, renowned for its sustainable and eco-friendly properties, is emerging as a promising thermal insulating material with the potential to significantly enhance energy efficiency and sustainability in building applications. However, its relatively high thermal conductivity, large-pore configurations, and energy-intensive manufacturing processes hinder its widespread use. Here, we report on the scalable, one-pot synthesis of biogenic foams achieved by integrating recycled paper pulp and in situ nanoporous silica formation, resulting in a hierarchical structure comprising both micropores and nanopores.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, Central University of Punjab, Bathinda 151401, India.
Visible-light-driven metal- and photocatalyst-free cascade 1,4-HAT and dearomative spirocyclization of -benzylacrylamides are described for sustainable synthesis of a variety of pharmaceutically important γ-ketoamides and 2-Azaspiro[4.5]decanes in one pot in good to excellent yields. Readily accessible and nontoxic materials, expensive Ir or Ru photocatalyst-free mild conditions, excellent functional group tolerance, operational simplicity, and scalability enhance the practical value of this protocol.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
This study presents a facile one-pot synthesis method to fabricate BiFeO-BiFeO-BiO heterojunction photocatalysts with controllable compositions and pure phases. Three different binary heterojunctions (BiFeO/BiFeO, BiFeO/BiO, and BiFeO/BiO) and a ternary BiFeO/BiFeO/BiO heterojunction were formed, all exhibiting significantly enhanced photocatalytic performance for the degradation of methylene blue (MB) and phenol under visible light irradiation, outperforming the individual compositions. Notably, the BiFeO/BiFeO heterojunction achieved the highest degradation efficiency (93.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!