AI Article Synopsis

Article Abstract

Crystallization by pH adjustment, as a type of reaction crystallization, is a solid-liquid separation method widely used in the area of pharmaceutical and pharmaceutical intermediate manufacturing. On the other hand, 3-alkenyl cephem compound is a typical zwitterionic pharmaceutical intermediate that possesses both an amino group and a carboxylic acid group. Such structure affords three main pH regions in solution and results in difficulties using crystallization by pH adjustment for isolation. As a consequence, 3-alkenyl cephem compound is usually crystallized at the point away from the solubility curve, causing unrestricted nucleation and flocculation behavior for the deposited particles which is difficult to filtrate. In this study, the pK of 3-alkenyl cephem compound was intensively investigated to inhibit the nucleation. An optimal pH level point was also sought to make monodisperse particles. In particular, during crystallization by pH-modulation operation, the key point was identified to be the number of primary particles aggregated in the secondary particles. It was revealed that the increment number of primary particles led to the generation of larger monodisperse particles. This investigation, combined with solid-liquid equilibrium, enabled the acquisition of target species with good operability for filtration process. This present investigation becomes the prosperity in the zwitterion compound production that it has hardships to crystallize and filtrate.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.c18-01004DOI Listing

Publication Analysis

Top Keywords

3-alkenyl cephem
12
cephem compound
12
crystallization adjustment
8
pharmaceutical intermediate
8
monodisperse particles
8
number primary
8
primary particles
8
particles
6
crystallization
5
study control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!