Apoptotic-like changes in epididymal spermatozoa of soft-shelled turtles, Pelodiscus sinensis, during long-term storage at 4 ºC.

Anim Reprod Sci

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China. Electronic address:

Published: June 2019

Apoptosis is a physiological phenomenon that has been recognized as a cause of sperm death during cryopreservation in endothermic mammals. There is, however, no data on its role in sperm death during cooled storage in ectothermic animals. In this study, spermatozoa from the epididymis of soft-shelled turtle were investigated to identify the mechanism of spermatozoa apoptotic-like changes during storage at 4 °C. In this study, there was survival of spermatozoa for more than 40 Days when stored at 4 °C. During cooled storage, sperm kinematics was evaluated using CASA system. Values for all sperm motility variables decreased during the period of storage; while for velocity curvilinear (VCL) there was a further decrease after 20 Days of storage. Results from flow cytometry analysis indicated that there was a significant increase in the percentage of apoptotic spermatozoa, but there was no change in the percentage of necrosis. Furthermore, the concentration of cellular ROS increased after 20 Days of storage at 4 °C. The results using JC-1 staining indicated there was a decrease in MMP of spermatozoa as the duration of storage at 4 °C increased. Nuclear fragmentation of spermatozoa was observed using TEM on Day 30 of storage. There were large amounts of pro-apoptotic cytochrome c (Cytc) and cleaved caspase-9/3 proteins detected using western blot analysis after 30 days of spermatozoa storage at 4 °C. These findings indicate ROS generation induces mitochondria damage after 20 days of storage at 4 °C, which can induce spermatozoa apoptotic-like changes during storage of soft-shelled turtle spermatozoa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2019.04.014DOI Listing

Publication Analysis

Top Keywords

storage 4 °c
20
apoptotic-like changes
12
storage
12
days storage
12
spermatozoa
10
sperm death
8
cooled storage
8
soft-shelled turtle
8
spermatozoa apoptotic-like
8
changes storage
8

Similar Publications

Current and Emerging Therapies for Lysosomal Storage Disorders.

Drugs

January 2025

Lysosomal Storage Disorders Unit, Royal Free London NHS Foundation Trust, University College London, London, NW3 2QG, UK.

Lysosomal storage disorders (LSDs) are rare inherited metabolic disorders characterized by defects in the function of specific enzymes responsible for breaking down substrates within cellular organelles (lysosomes) essential for the processing of macromolecules. Undigested substrate accumulates within lysosomes, leading to cellular dysfunction, tissue damage, and clinical manifestations. Clinical features vary depending on the degree and type of enzyme deficiency, the type and extent of substrate accumulated, and the tissues affected.

View Article and Find Full Text PDF

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Easily Water-Synthesisable Iron-Chloranilate Frameworks as High Energy and High-Power Cathodes for Sustainable Alkali-Ion Batteries.

Angew Chem Int Ed Engl

January 2025

Universidad Complutense de Madrid Facultad de Ciencias Quimicas, Inorganic Chemistry Department, 28034, Madrid, SPAIN.

Achieving high battery performance from low-cost, easily synthesisable electrode materials is crucial for advancing energy storage technologies. Metal organic frameworks (MOFs) combining inexpensive transition metals and organic ligands are promising candidates for high-capacity cathodes. Iron-chloranilate-water frameworks are herein reported to be produced in aqueous media under mild conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!