Myoimaging in Congenital Myopathies.

Semin Pediatr Neurol

Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Ile-de-France Ouest, Pôle neuro-locomoteur, Raymond Poincaré Teaching Hospital, Garches, France; INSERM U 1179, University of Versailles Saint-Quentin-en-Yvelines (UVSQ) Paris- Saclay, France; Unit of Neuromuscular Disorders, Departments of Pediatric Neurology, Intensive Care and Rehabilitation Unité de Maladies Neuromusculaires, Service de Neurologie et Réanimation Pédiatriques, Hôpital Raymond Poincaré, Garches, France. Electronic address:

Published: April 2019

There is a great clinical and genetic heterogeneity in congenital myopathies. Myo-MRI with pattern recognition has become a first-line complementary tool in clinical practice for this group of diseases. For diagnostic purposes, whole-body imaging techniques are preferred when involvement is axial or diffuse, as in most congenital myopathies, because of involvement of the tongue, masticator, neck or trunk muscles. Myo-MRI is widely used to identify abnormalities in muscle signal, volume or texture. Recognizable profiles or patterns have been identified in many of these genetic myopathies. The role of the radiologist is crucial in order to adapt the Myo-MRI protocols to the age of the patient and several clinical situations. Myo-MRI in children with congenital myopathies is a very demanding technique with a balance between acceptable time of examination and sufficient spatial resolution in order to detect subtle changes. Technical evolutions combining qualitative and quantitative analysis are useful to follow disease progression overtime. Outcome measures are expected to play a role in natural history description as well as in future therapeutic trials. Genetic diagnosis and interpretation of next generation sequencing results could be greatly influenced by statistical analysis with tools such as algorithms as well as graphical representations using heatmaps.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spen.2019.03.019DOI Listing

Publication Analysis

Top Keywords

congenital myopathies
16
myopathies
5
myoimaging congenital
4
myopathies great
4
great clinical
4
clinical genetic
4
genetic heterogeneity
4
heterogeneity congenital
4
myo-mri
4
myopathies myo-mri
4

Similar Publications

Congenital muscular dystrophies and myopathies: the leading cause of genetic muscular disorders in eleven Chinese families.

BMC Musculoskelet Disord

January 2025

Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, China.

Background: Congenital muscular dystrophies (CMDs) and myopathies (CMYOs) are a clinically and genetically heterogeneous group of neuromuscular disorders that share common features, such as muscle weakness, hypotonia, characteristic changes on muscle biopsy and motor retardation. In this study, we recruited eleven families with early-onset neuromuscular disorders in China, aimed to clarify the underlying genetic etiology.

Methods: Essential clinical tests, such as biomedical examination, electromyography and muscle biopsy, were applied to evaluate patient phenotypes.

View Article and Find Full Text PDF

Child Neurology: Severe -Related Congenital Muscular Dystrophy With Rapidly Progressive Encephalopathy Leading to Infantile Death.

Neurology

February 2025

Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada.

Pathogenic variants in cause congenital muscular dystrophy through hypoglycosylation of alpha-dystroglycan (OMIM #615350). The established phenotypic spectrum of GMPPB-related disorders includes recurrent rhabdomyolysis, limb-girdle muscular dystrophy, neuromuscular transmission abnormalities, and congenital muscular dystrophy with variable brain and eye anomalies. We report a 9-month-old male infant with congenital muscular dystrophy, infantile spasms, and compound heterozygous pathogenic variants (c.

View Article and Find Full Text PDF

Clinical and imaging spectrum of non-congenital dominant ACTN2 myopathy.

J Neurol

January 2025

Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain.

Background: Alpha-actinin-2, a protein with high expression in cardiac and skeletal muscle, is located in the Z-disc and plays a key role in sarcomere stability. Mutations in ACTN2 have been associated with both hypertrophic and dilated cardiomyopathy and, more recently, with skeletal myopathy.

Methods: Genetic, clinical, and muscle imaging data were collected from 37 patients with an autosomal dominant ACTN2 myopathy belonging to 11 families from Spain and Belgium.

View Article and Find Full Text PDF

Introduction: Nemaline myopathy (NM), also known as Nemalinosis, is a rare congenital muscle disease with an incidence of 1 in 50000. It is characterized by nemaline rods in muscle fibers, leading to muscle weakness. We reported a case of NM revealed by cardiac involvement, and we highlighted the challenges in diagnosing this condition as well as its poor prognosis.

View Article and Find Full Text PDF

Liver Transplant Outcome in Chanarin-Dorfman Syndrome: A Rare Lipid Storage Disease.

Exp Clin Transplant

December 2024

>From the Department of Anesthesia and Intensive Care, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

Chanarin-Dorfman syndrome is a multisystem inherited metabolic disorder characterized by congenital ichthyosis and lipid droplet accumulation in various organs, including the liver, muscles, and skin. The accumulation of lipids in the liver can lead to cirrhosis, liver failure, and even hepatocellular carcinoma. Here, we present a 17-year-old girl who underwent a deceased donor liver transplant to treat uncompensated cirrhosis due to Chanarin-Dorfman syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!