The aim of this study was to identify biological pathways and proteins differentially expressed in the saliva proteome of sheep after the application of a model of stress, using high-resolution quantitative proteomics. In addition, one of the proteins differently expressed was verified and evaluated as a possible biomarker of stress in this species. Saliva paired samples from eight sheep before and after the application of a model of stress based on shearing were analysed using tandem mass tags (TMT). The TMT analysis allowed for the identification of new stress-related metabolic pathways and revealed 13 proteins, never described in saliva of sheep, that were differentially expressed between before and after the stress. Six of these proteins pertain to four major metabolic pathways affected, namely: canonical glycolysis, oxygen transport, neural nucleus development, and regulation of actin cytoskeleton reorganization. The rest of proteins were unmapped original proteins such as acyl-coenzyme-A-binding protein; complement C3; alpha-2-macroglobulin isoform-X1; type-II small proline-rich protein; lactoferrin; secretoglobin family-1D-member; and keratin, type-II cytoskeletal 6. Of these proteins, based on its biological significance and specific immunoassay availability, lactoferrin was selected for further validation. The immunoassay intra- and inter-assay coefficients of variation were lower than 13%. The method showed good linearity under dilution and recovery, and the detection limit was low enough to detect salivary lactoferrin levels. A significant decrease (P < 0.01) in salivary lactoferrin concentration in the sheep following the application of the model of stress was observed, suggesting that this protein could be a potential salivary biomarker of stress situations in sheep.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rvsc.2019.04.012 | DOI Listing |
J Transl Med
January 2025
Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
Background: The small intestine harbors a rich array of intestinal intraepithelial lymphocytes (IELs) that interact with structural cells to collectively sustain gut immune homeostasis. Dysregulation of gut immune homeostasis was implicated in the pathogenesis of multiple autoimmune diseases, however, whether this homeostasis is disrupted in a lupus autoimmune background remains unclear.
Methods: We performed single-cell RNA sequencing (scRNA-seq) analyses to elucidate immune and structural milieu in the intestinal epithelium of MRL/Lpr lupus mice (Lpr mice) and MRL/Mpj control mice (Mpj mice).
Cell Biochem Biophys
January 2025
Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, UP, India.
Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.
View Article and Find Full Text PDFNano Lett
January 2025
Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China.
Crystals with three-dimensional (3D) stereoscopic structures, characterized by diverse shapes, crystallographic planes, and morphologies, represent a significant advancement in catalysis. Differentiating and quantifying the catalytic activity of specific surface facets and sites at the single-particle level is essential for understanding and predicting catalytic performance. This study employs super-resolution radial fluctuations electrogenerated chemiluminescence microscopy (SRRF-ECLM) to achieve high-resolution mapping of electrocatalytic activity on individual 3D CuO crystals, including cubic, octahedral, and truncated octahedral structures.
View Article and Find Full Text PDFBone Rep
March 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America.
High resolution peripheral quantitative computed tomography (HRpQCT) offers detailed bone geometry and microarchitecture assessment, including cortical porosity, but assessing chronic kidney disease (CKD) bone images remains challenging. This proof-of-concept study merges deep learning and machine learning to 1) improve automatic segmentation, particularly in cases with severe cortical porosity and trabeculated endosteal surfaces, and 2) maximize image information using machine learning feature extraction to classify CKD-related skeletal abnormalities, surpassing conventional DXA and CT measures. We included 30 individuals (20 non-CKD, 10 stage 3 to 5D CKD) who underwent HRpQCT of the distal and diaphyseal radius and tibia and contributed data to develop and validate four different AI models for each anatomical site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!