A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders. | LitMetric

To estimate the reliability and cognitive states of operator performance in a human-machine collaborative environment, we propose a novel human mental workload (MW) recognizer based on deep learning principles and utilizing the features of the electroencephalogram (EEG). To determine personalized properties in high dimensional EEG indicators, we introduce a feature mapping layer in stacked denoising autoencoder (SDAE) that is capable of preserving the local information in EEG dynamics. The ensemble classifier is then built via the subject-specific integrated deep learning committee, and adapts to the cognitive properties of a specific human operator and alleviates inter-subject feature variations. We validate our algorithms and the ensemble SDAE classifier with local information preservation (denoted by EL-SDAE) on an EEG database collected during the execution of complex human-machine tasks. The classification performance indicates that the EL-SDAE outperforms several classical MW estimators when its optimal network architecture has been identified.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2019.04.034DOI Listing

Publication Analysis

Top Keywords

deep learning
12
mental workload
8
eeg
5
assessing cognitive
4
cognitive mental
4
workload eeg
4
eeg signals
4
signals ensemble
4
ensemble deep
4
learning classifier
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!