The yeast Candida glabrata, an opportunistic human fungal pathogen, is the second most prevalent cause of candidiasis worldwide, with an infection incidence that has been increasing in the past decades. The completion of the C. glabrata reference genome made fundamental contributions to the understanding of the molecular basis of its pathogenic phenotypes. However, knowledge of genome-wide genetic variations among C. glabrata strains is limited. In this study, we present a population genomic study of C. glabrata based on whole genome re-sequencing of 47 clinical strains to an average coverage of ∼63×. Abundant genetic variations were identified in these strains, including single nucleotide polymorphisms (SNPs), small insertion/deletions (indels) and copy number variations (CNVs). The observed patterns of variations revealed clear population structure of these strains. Using population genetic tests, we detected fast evolution of several genes involved in C. glabrata adherence ability, such as EPA9 and EPA10. We also located genome structural variations, including aneuploidies and large fragment CNVs, in regions that are functionally related to virulence. Subtelometric regions were hotspots of CNVs, which may contribute to variation in expression of adhesin genes that are important for virulence. We further conducted a genome-wide association study that identified two SNPs in the 5'UTR region of CST6 that were associated with fluconazole susceptibility. These observations provide convincing evidence for the highly dynamic nature of the C. glabrata genome with potential adaptive evolution to clinical environments, and offer valuable resources for investigating the mechanisms underlying drug resistance and virulence in this fungal pathogen. (249 words).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2019.05.002 | DOI Listing |
Mol Ecol
January 2025
ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.
Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil-plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Ophthalmology, Ningbo Yinzhou No.2 Hospital, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang, China.
Background: We report a rare case of fungal keratitis caused by , a filamentous fungus that is widely distributed in soil and graminaceous plants.
Case Presentation: A 40-year-old Mongoloid male patient came to our outpatient clinic with painful swelling of the left eye and redness, after being cut by a tree branch 1 week prior. After examination, the patient was diagnosed with a corneal ulcer of the left eye, and was given levofloxacin eye drops and levofloxacin ophthalmic gel.
Front Genet
December 2024
Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States.
Viral infection plays a significant role in the development and progression of many cancers. Certain viruses, such as Human Papillomavirus (HPV), Epstein-Barr Virus (EBV), and Hepatitis B and C viruses (HBV, HCV), are well-known for their oncogenic potential. These viruses can dysregulate specific molecular and cellular processes through complex interactions with host cellular mechanisms.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
Bacterial canker is a devastating disease in kiwifruit production, primarily caused by pv. . In this study, a strain of named JIN4, isolated from a kiwifruit branch, showed antagonistic activity.
View Article and Find Full Text PDFPlants recognize a variety of environmental molecules, thereby triggering appropriate responses to biotic or abiotic stresses. Substances containing microbes-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) are representative inducers of pathogen resistance and damage repair, thus treatment of healthy plants with such substances can pre-activate plant immunity and cell repair functions. In this study, the effects of DAMP/MAMP oligosaccharides mixture (Oligo-Mix) derived from plant cell wall (cello-oligosaccharide and xylo-oligosaccharide), and fungal cell wall (chitin-oligosaccharide) were examined in cucumber.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!