Background: The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus contains the master circadian clock of the body and an unusually large number of cells expressing stem cell-related proteins. These seemingly undifferentiated cells may serve in entrainment of the SCN circadian clock to light cycles or allow it to undergo neural plasticity important for modifying its rhythmic output signals. These cells may also proliferate and differentiate into neurons or glia in response to episodic stimuli or developmental events requiring alterations in the SCN's control of physiology and behavior.
Problem: To characterize expression of stem cell related proteins in the SCN and the effects of stem-like cells on circadian rhythms.
Methods: Explant cultures of mouse SCN were maintained in medium designed to promote survival and growth of stem cells but not neuronal cells. Several stem cell marker proteins including SRY-box containing gene 2 (SOX2), nestin, vimentin, octamer-binding protein 4 (OCT4), and Musashi RNA-binding protein 2 (MSI2) were identified by immunocytochemistry in histological sections from adult mouse SCN and in cultures of microdissected SCN. A bioinformatics analysis located potential SCN targets of MSI2 and related RNA-binding proteins.
Results: Cells expressing stem cell markers proliferated in culture. Immunostained brain sections and bioinformatics supported the view that MSI2 regulates immature properties of SCN neurons, potentially providing flexibility in SCN neural circuits. Explant cultures had ongoing mitotic activity, indicated by proliferating-cell nuclear antigen, and extensive cell loss shown by propidium iodide staining. Cells positive for vasoactive intestinal polypeptide (VIP) that are highly enriched in the SCN were diminished in explant cultures. Despite neuronal cell loss, tissue remained viable for over 7 weeks in culture, as shown by bioluminescence imaging of explants prepared from SCN of Per1::luc transgenic mice. The circadian rhythm in SCN gene expression persisted in brain slice cultures in stem cell medium. Prominent, widespread expression of RNA-binding protein MSI2 supported the importance of posttranscriptional regulation in SCN functions and provided further evidence of stem-like cells.
Conclusion: The results show that the SCN retains properties of immature neurons and these properties persist in culture conditions suitable for stem cells, where the SCN stem-like cells also proliferate. These properties may allow adaptive circadian rhythm adjustments. Further exploration should examine stem-like cells of the SCN in vivo, how they may affect circadian rhythms, and whether MSI2 serves as a master regulator of SCN stem-like properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijdevneu.2019.04.007 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen 52074, Germany.
Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.
Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.
View Article and Find Full Text PDFPatients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) have poor outcomes. Gemcitabine + oxaliplatin (GemOx) with rituximab, a standard salvage therapy, yields complete response (CR) rates of approximately 30% and median overall survival (OS) of 10-13 months. Patients with refractory disease fare worse, with a CR rate of 7% for subsequent therapies and median OS of 6 months.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!