The level of response to sugar plays a role in many aspects of honey bee behavior including age dependent polyethism and division of labor. Bees may tune their sensitivity to sugars so that they maximize collection of high quality nectar, but they must also be able to collect from less profitable sources when high quality food is scarce. However, our understanding of the mechanisms by which bees can change their responsiveness to different sugars remains incomplete. To investigate the plasticity of sensitivity to sugar, bees were raised on different sugars either in vitro or in colonies. Bees raised in the incubator on diets containing mostly either fructose or glucose showed significantly more responsiveness to the majority sugar. In contrast, bees raised in colonies that only foraged on fructose or glucose responded equally well to both sugars. These data suggest that developmental plasticity for responses to sugar is masked by the feeding of worker jelly to larvae and young bees. The production of worker jelly from secretions of the hypopharyngeal and mandibular glands by nurse bees ensures that both glucose and fructose are experienced by young bees so that they respond to both sugars and will be able to exploit all future food sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinsphys.2019.05.002 | DOI Listing |
PLoS One
January 2025
Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, England, United Kingdom.
Pressures on honey bee health have substantially increased both colony mortality and beekeepers' costs for hive management across Europe. Although technological advances could offer cost-effective solutions to these challenges, there is little research into the incentives and barriers to technological adoption by beekeepers in Europe. Our study is the first to investigate beekeepers' willingness to adopt the Bee Health Card, a molecular diagnostic tool developed within the PoshBee EU project which can rapidly assess bee health by monitoring molecular changes in bees.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2025
Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy.
Beehives can accumulate environmental contaminants as bees gather pollen, propolis, and water from their surroundings, contaminating hive products like honey. Moreover, in multifloral environments, bees can interact with plants treated with different pesticides, often causing higher pesticides concentrations in multi-floral honey than in mono-floral varieties. Glyphosate and glufosinate are both widely used herbicides.
View Article and Find Full Text PDFJ Insect Physiol
December 2024
Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France. Electronic address:
Pest Manag Sci
December 2024
Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA.
Agricultural pesticides have historically been a critical tool in controlling pests and diseases, preventing widespread suffering and crop losses that led to catastrophes such as the Great Irish Famine (1845-1852) and the Cotton Boll Weevil Infestation (1915-1916). However, their usage has brought challenges, including resistance development, secondary pest outbreaks, harm to non-target organisms like pollinators, and environmental contamination. In response to these concerns, integrated pest management (IPM) has emerged as a comprehensive approach, emphasizing non-chemical pest control methods such as cultural practices, biological control, and crop rotation, with pesticides as the last resort.
View Article and Find Full Text PDFAnim Sci J
December 2024
Faculty of Agriculture, Department of Animal Science, Selçuk University, Konya, Türkiye.
Sustainability in beekeeping depends on identifying the factors affecting honey and beeswax yields (HY and BWY) - key products - and accurately predicting these yields. Therefore, this study aimed to predict HY and BWY using a classification and regression tree (CART), eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms, and thermal image processing in Apis mellifera. In this study, 13 colonies of 6 different breeds raised in 10-frame Langstroth hives were used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!