Anomalous diffusion for neuronal growth on surfaces with controlled geometries.

PLoS One

Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America.

Published: January 2020

Geometrical cues are known to play a very important role in neuronal growth and the formation of neuronal networks. Here, we present a detailed analysis of axonal growth and dynamics for neuronal cells cultured on patterned polydimethylsiloxane surfaces. We use fluorescence microscopy to image neurons, quantify their dynamics, and demonstrate that the substrate geometrical patterns cause strong directional alignment of axons. We quantify axonal growth and report a general stochastic approach that quantitatively describes the motion of growth cones. The growth cone dynamics is described by Langevin and Fokker-Planck equations with both deterministic and stochastic contributions. We show that the deterministic terms contain both the angular and speed dependence of axonal growth, and that these two contributions can be separated. Growth alignment is determined by surface geometry, and it is quantified by the deterministic part of the Langevin equation. We combine experimental data with theoretical analysis to measure the key parameters of the growth cone motion: speed and angular distributions, correlation functions, diffusion coefficients, characteristics speeds and damping coefficients. We demonstrate that axonal dynamics displays a cross-over from Brownian motion (Ornstein-Uhlenbeck process) at earlier times to anomalous dynamics (superdiffusion) at later times. The superdiffusive regime is characterized by non-Gaussian speed distributions and power law dependence of the axonal mean square length and the velocity correlation functions. These results demonstrate the importance of geometrical cues in guiding axonal growth, and could lead to new methods for bioengineering novel substrates for controlling neuronal growth and regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6502317PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216181PLOS

Publication Analysis

Top Keywords

axonal growth
16
neuronal growth
12
growth
11
geometrical cues
8
growth cone
8
dependence axonal
8
correlation functions
8
axonal
6
neuronal
5
dynamics
5

Similar Publications

Neurotrophic factors are critical for establishing functional connectivity in the nervous system and sustaining neuronal survival through adulthood. As the first neurotrophic factor purified, nerve growth factor (NGF) is extensively studied for its prolific role in axon outgrowth, pruning, and survival. Applying NGF to diseased neuronal tissue is an exciting therapeutic option and understanding how NGF regulates local axon susceptibility to pathological degeneration is critical for exploiting its full potential.

View Article and Find Full Text PDF

Spinal cord injury (SCI) remains a significant clinical challenge, with no fully effective treatment available despite advancements in various therapeutic approaches. This review examines the emerging role of induced neural stem cells (iNSCs) as promising candidates for SCI treatment, highlighting their potential for direct neural regeneration and integration with host tissue. We explore the biology of iNSCs, their mechanisms of action, and their interactions with host tissue, including modulating inflammatory responses, promoting axonal growth, and reconstructing neural circuits.

View Article and Find Full Text PDF

Fucosidosis: A Review of a Rare Disease.

Int J Mol Sci

January 2025

Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.

Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.

View Article and Find Full Text PDF

Mimicking Axon Growth and Pruning by Photocatalytic Growth and Chemical Dissolution of Gold on Titanium Dioxide Patterns.

Molecules

December 2024

Chair for Integrated Systems and Photonics, Department of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.

Biological neural circuits are based on the interplay of excitatory and inhibitory events to achieve functionality. Axons form long-range information highways in neural circuits. Axon pruning, i.

View Article and Find Full Text PDF

This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!