Role of ArsEFG in Roxarsone and Nitarsone Detoxification and Resistance.

Environ Sci Technol

Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University, Miami , Florida 33199 , United States.

Published: June 2019

Organoarsenical biotransformations are important components of the global cycling of arsenic. Roxarsone (3-nitro-4-hydroxybenzenearsenate or Rox(V)) and nitarsone (4-nitrobenzene arsenate or Nit(V)) are synthetic aromatic organoarsenicals used in the poultry industry as additives to prevent coccidiosis and improve feed efficiency. Here, we describe a novel pathway of resistance to roxarsone and nitarsone involving biotransformation of their trivalent forms (Rox(III)) and (Nit(III)) to the trivalent organoarsenicals HAPA(III) and pAsA(III), coupled to active extrusion of the aromatic aminobenezylarsenicals from the cells. The arsE, arsF, and arsG were cloned from the arsenic island in the chromosome of Shewanella putrefaciens 200. When expressed in Escherichia coli together, but not alone, arsEFG conferred resistance to Rox(III) and Nit(III) and decreased the accumulation of both. The cells transformed Rox(III) or Nit(III) to HAPA(III) or pAsA(III) by reducing the nitro group to an amine. Everted membrane vesicles from cells expressing arsG accumulated HAPA(III) or pAsA(III). Our data indicate that ArsE and ArsF together reduce Rox(III) or Nit(III) to HAPA(III) or pAsA(III), which are extruded from the cells by the efflux permease ArsG. Identification of the coupled pathway of ArsE, ArsF, and ArsG catalysis is a molecular description of a novel pathway for resistance to roxarsone and nitarsone.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b01187DOI Listing

Publication Analysis

Top Keywords

roxiii nitiii
16
hapaiii pasaiii
16
roxarsone nitarsone
12
arse arsf
12
novel pathway
8
pathway resistance
8
resistance roxarsone
8
arsf arsg
8
nitiii hapaiii
8
role arsefg
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!