Polymersomes are of interest as nanocarriers due to their physical and chemical robustness, which arises from the macromolecular nature of their block copolymer components. However, the physical robustness of polymersomes impairs transmembrane diffusion and responsiveness to mechanical forces. Polymer nanocarriers that can reversibly deform under stress while maintaining structural integrity and transmembrane diffusivity are desired for development of gas transport vehicles. Here, we report polymersomes composed of amphiphilic block copolymers containing polydimethylsiloxane with side-chain pendant vinyl groups. A reversibly deformable polymersome compartmentalizing membrane was obtained by cross-linkage of PEG- b-poly(dimethyl- r-methylvinyl)silane in a self-assembled bilayer via photoradical generation in aqueous media. The covalently cross-linked polymersomes exhibited superior physical robustness compared to unlinked polymersomes while maintaining deformability under stress. Transmembrane oxygen diffusion was confirmed when lumen-encapsulated Zn-porphyrin generated singlet O under irradiation, and the anthracene-9,10-dipropionic acid O quencher was consumed. Polymersome-encapsulated hemoglobin bound oxygen reversibly, indicating the polymersomes could be used as O carriers that reversibly deform without sacrificing structural integrity or oxygen transportability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.9b00485 | DOI Listing |
Biomacromolecules
January 2025
Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
Bioresponsive polymeric nanoparticles (NPs) that are capable of delivering and releasing therapeutics and biotherapeutics to target sites have attracted vivid interest in cancer therapy and immunotherapy. In contrast to enthusiastic evolution in the academic world, the clinical translation of these smart systems is scarce, partly due to concerns about safety, stability, complexity, and scalability. The moderate targetability, responsivity, and benefits are other concerns.
View Article and Find Full Text PDFBiomacromolecules
August 2024
Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
ACS Macro Lett
May 2024
Cancer Institute, Xuzhou Medical University, Xuzhou 221004, P. R. China.
The high glutathione (GSH) level of the tumor microenvironment severely affects the efficacy of photodynamic therapy (PDT). The current GSH depletion strategies have difficulty meeting the dual needs of security and efficiency. In this study, we report a photosensitizer Chlorin e6 (Ce6) and hypoxia-activated prodrug tirapazamine (TPZ) coloaded cross-linked multifunctional polymersome (TPZ/Ce6@SSPS) with GSH-triggered continuous GSH depletion for enhanced photodynamic therapy and hypoxia-activated chemotherapy.
View Article and Find Full Text PDFMacromolecules
January 2024
Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, D-52074 Aachen, Germany.
Soft polymer nanocapsules and microgels, which can adapt their shape and, at the same time, sequester and release molecular payloads in response to an external trigger, are a challenging complement to vesicular structures like polymersomes. In this work, we report the synthesis of such capsules by photo-cross-linking of coumarin-substituted polyglycidyl ethers, which we prepared by Williamson etherification of epichlorohydrin (ECH) repeating units with 7-hydroxycoumarin in copolymers with -butyl glycidyl ether (BGE). To control capsule size, we employed the prepolymers in an o/w miniemulsion, where they formed a gel layer at the interface upon irradiation at 365 nm by [2π + 2π] photodimerization of the coumarin groups.
View Article and Find Full Text PDFPolymers (Basel)
November 2022
Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Surat 395 007, Gujarat, India.
Self-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic patterns proposed as a dominant tool for the 'bottom-up' fabrication of nanomaterials with different levels of ordering. The present review article focuses on the recent updates to the self-association of amphiphilic block copolymers in aqueous media into varied core-shell morphologies. We briefly describe the block copolymers, their types, microdomain formation in bulk and micellization in selective solvents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!