Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An effective and straightforward route for tailoring the self-supporting, exfoliated flexible graphite substrate (E-FGS) using electrochemical anodization is proposed. E-FGS has essential features of highly exfoliated, few-layered, two-dimensional graphite sheets with the size of several tens of micrometers, interconnected along the axis of the substrate surface. The novel hierarchical porous structural morphology of E-FGS enables large active sites for efficient electrolyte ion and charge transport when used as electrode material for a supercapacitor. In order to effectively utilize this promising E-FGS electrode for energy storage purpose, a ternary composite is further synthesized with pseudocapacitive polyhydroquinone (PHQ) and hydrous RuO (hRO). hRO is synthesized via a sol-gel route, while electropolymerization is utilized for the electrodeposition of PHQ over E-FGS. Ultimately, the fabricated self-supporting E-FGS-based flexible supercapacitor is capable of delivering areal specific capacitance values as high as 378 mF cm at a current density of 1 mA cm. Addition of the pseudocapacitive component to the E-FGS texture leads to ∼10 times increase of the electrochemical charge storage capability. The imposition of mechanical forces to this flexible supercapacitor device results in trivial changes in electrochemical properties and is still capable of retaining 91% of the initial specific capacitance after 10 000 cycles. Alongside, the fabricated symmetrical solid-state flexible device exhibited a high energy density of 8.4 μWh cm. The excellent performance along with the ease of synthesis and fabrication process of the flexible solid-state supercapacitor device using PHQ/hRO/E-FGS holds promise for large-scale production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b01712 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!