Ferroelectrics have recently attracted attention as a candidate class of materials for use in photovoltaic devices due to their abnormal photovoltaic effect. However, the current reported efficiency is still low. Hence, it is urgent to develop narrow-band gap ferroelectric materials with strong ferroelectricity by low-temperature synthesis. In this paper, the perovskite bismuth ferrite BiFeO (BFO) thin films were fabricated on SnO: F (FTO) substrates by the sol-gel method and they were rapidly annealed at 450, 500 and 550 °C, respectively. The microstructure and the chemical state's evolution with annealing temperature were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), and the relationship between the microstructure and electric, optical and photovoltaic properties were studied. The XRD, SEM and Raman results show that a pure phase BFO film with good crystallinity is obtained at a low annealing temperature of 450 °C. As the annealing temperature increases, the film becomes more uniform and has an improved crystallinity. The XPS results show that the Fe/Fe ratio increases and the ratio of oxygen vacancies/lattice oxygen decreases with increasing annealing temperature, which results in the leakage current gradually being reduced. The band gap is reduced from 2.68 to 2.51 eV due to better crystallinity. An enhanced photovoltaic effect is observed in a 550 °C annealed BFO film with a short circuit current of 4.58 mA/cm and an open circuit voltage of 0.15 V, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539945 | PMC |
http://dx.doi.org/10.3390/ma12091444 | DOI Listing |
Polymers (Basel)
January 2025
Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil.
In this research, poly(lactic acid) (PLA) nanocomposites with multi-walled carbon nanotubes (MWCNT) were produced by extrusion, injection, and compression molding, focusing on electromagnetic shielding. Various amounts of carbon nanotubes (MWCNTs) were tested in PLA matrix, specifically ranging from 1 to 4 parts per hundred resin (phr). The resulting nanocomposites were analyzed before and after undergoing annealing heat treatment.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Joint R&D Center for Metallic Materials, Metallic Wire and Metallic Card Clothing, Xi'an 710021, China.
The mechanical properties of music wire are contingent upon its microstructure, which in turn influences its applications in music. Chinese stringed instruments necessitate exacting standards for comprehensive performance indexes, particularly with regard to the strength, resilience, and rigidity of the musical steel wires, which differ from the Western approach to musical wire. In this study, SWP-B music wire was selected for investigation through metal heat treatment, which was employed to regulate its microstructure characteristics.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
High-grade non-oriented silicon steel with high magnetic induction and low iron loss produced with low carbon emissions is crucial for the development of new energy and energy-saving motors. In this paper, the trace mixed rare earth (RE) elements exhibit a great potential to enhance magnetic properties in a lower carbon emission process by multiple effects on microstructure, texture, and inclusion in non-oriented silicon steel. With the trace-doped RE elements (0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
This study investigates the grain morphology, microstructure, magnetic properties and shape memory properties of an FeNiCoAlTaB (at%) high-entropy alloy (HEA) cold-rolled to 98%. The EBSD results show that the texture intensities of the samples annealed at 1300 °C for 0.5 or 1 h are 2.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
3D Printing Research and Engineering Technology Center, Beijing Institute of Aeronautical Materials, Beijing 100095, China.
This work investigated the CrNiMo stainless steel using laser selective melting (SLM) technology and explored the effect of the tempering temperature on the microstructure and properties. After the tempering treatment, the quenched martensite transformed from a metastable to steady state, and residual austenite was formed. The results indicated that the elongation of the transverse specimen showed an upward trend as the tempering temperature increased, while the elongation of the longitudinal specimen first increased and then decreased.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!