Limited light harvesting and charge collection are recognized as grand challenges for the exploration of highly efficient TiO photoanodes. To overcome these intrinsic shortcomings, we reported the designed photoanode based on TiO nanoarrays with both hydrogenation treatment and surface decoration of carbon quantum dots (CQDs) toward efficient photoelectrochemical water splitting. The results revealed that hydrogenation treatment could cause the formation of oxygen vacancies to suppress the recombination of photoinduced carriers. Meanwhile, the decorated CQDs could not only play as the electron reservoirs to trap photoinduced electrons but also remarkably enhance the solar light harvesting due to their upconversion effect. The as-fabricated photoanodes exhibited a large photocurrent density of ∼3.0 mA/cm at 1.23 V versus reversible hydrogen electrode under simulated sunlight, which was the highest one among hydrogenated TiO photoanodes ever reported and was ∼6 times that of pristine analogues.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b04059DOI Listing

Publication Analysis

Top Keywords

hydrogenated tio
8
carbon quantum
8
quantum dots
8
efficient photoelectrochemical
8
photoelectrochemical water
8
water splitting
8
light harvesting
8
tio photoanodes
8
hydrogenation treatment
8
tio nanorod
4

Similar Publications

Enhancing the CO Oxidation Performance of Copper by Alloying with Immiscible Tantalum.

ACS Appl Mater Interfaces

January 2025

School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.

Copper-tantalum (Cu-Ta) immiscible alloy nanoparticles (NPs) have been the subject of extensive research in the field of structural materials, due to their exceptional nanostructural stability and high-temperature creep properties. However, Cu is also a highly active oxidation catalyst due to its abundant valence changes. In this study, we have for the first time obtained homogeneous CuTa ( = 0.

View Article and Find Full Text PDF

Atomically precise synthesis of graphene nanostructures on semiconductors and insulators has been a formidable challenge. In particular, the metallic substrates needed to catalyze cyclodehydrogenative planarization reactions limit subsequent applications that exploit the electronic and/or magnetic structure of graphene derivatives. Here, we introduce a protocol in which an on-surface reaction is initiated and carried out regardless of the substrate type.

View Article and Find Full Text PDF

Surface Oxygen Vacancies on Copper-Doped Titanium Dioxide for Photocatalytic Nitrate-to-Ammonia Reduction.

J Am Chem Soc

January 2025

Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.

Photocatalytic transformation of nitrate (NO) in wastewater into ammonia (NH) is a challenge in the detoxification and recycling of limited nitrogen resources. In particular, previously reported photocatalysts cannot promote the reaction using water as an electron donor. Herein, we report that copper-doped titanium dioxide (Cu-TiO) powders, prepared via the sol-gel method and subsequent calcination, promote NO-to-NH reduction in water.

View Article and Find Full Text PDF

Ultrahigh-Selectivity Photocatalytic Upgrading of Bio-Aldehydes/Diols to Monoalcohols Via In Situ Circumventing Coupling Co-Products Over Janus Single-Atom Pd/TiO.

Small Methods

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China.

Photocatalytic transfer hydrogenation of biomass-derived aldehydes to alcohols often results in unwanted coupling co-products. Herein, an ultraselective hydrogen transfer system enabled by in situ oxidative C─C bond cleavage over a Janus single-atom palladium on titanium dioxide (0.5Pd/TiO) photocatalyst is presented.

View Article and Find Full Text PDF

Defect-Mediated Crystallization of the Particulate TiO Photocatalyst Grown by Atomic Layer Deposition.

J Phys Chem C Nanomater Interfaces

January 2025

Surface Science Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland.

Nanopowders or films of pure and mixed oxides in nanoparticulate form have gained specific interest due to their applicability in functionalizing high-surface-area substrates. Among various other applications, our presented work primarily focuses on the behavior of TiO as a photocatalyst deposited by atomic layer deposition (ALD) on a quartz particle. The photocatalytic activity of TiO on quartz particles grown by ALD was studied in terms of ALD growth temperature and post-treatment heating rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!