The time-dependent forgetting of long-term spatial memories involves activation of NMDA receptors (NMDARs) in the hippocampus. Here, we tested whether NMDARs regulate memory persistence bidirectionally, decreasing or increasing the rate of forgetting. We found that blocking NMDAR activation with AP5 or the GluN2B-selective antagonist Ro25-6981 in the dorsal hippocampus (dHPC) prevented the natural forgetting of long-term memory for the locations of objects in an open field arena. In contrast, while enhancing NMDAR function with the partial agonist D-Cycloserine did not affect the speed of forgetting for these types of memories, infusing the NMDAR co-agonist D-Serine significantly shortened their persistence. These results suggest that NMDAR activity can modulate the speed of constitutive long-term memory decay in the dHPC and that regulating NMDAR expression and D-Serine availability could provide a mechanism to control the duration of long-term memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hipo.23096 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!