The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) removes temozolomide-induced alkylation, thereby preventing DNA damage and cytotoxicity. We investigated the prognostic effect of different MGMT methylation levels on overall and progression-free survival in 327 patients with primary glioblastoma undergoing standard treatment. We obtained MGMT methylation level in 4 CpG sites using pyrosequencing. The association between MGMT methylation level and survival was investigated using Cox proportional hazards model and an extension to detect time-varying effects. We found an association between MGMT methylation level and overall survival (OS) from around 9 months after the diagnosis, with no association between MGMT methylation level and OS before that. For patients surviving at least 9 months even small increases in MGMT methylation level are significantly beneficial (HR = 0.97, 95% CI [0.96, 0.98]). The predictive ability of MGMT methylation level on OS from 9 months after diagnosis has a Harrel's C of 66%. We conclude that the MGMT methylation level is strongly associated with survival only for patients surviving beyond 9 months with considerable effects for levels much lower than previously reported. Prognostic evaluation of cut-points of MGMT methylation levels and of CpG island site selection should take the time-varying effect on overall survival into account.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581556PMC
http://dx.doi.org/10.1093/jnen/nlz032DOI Listing

Publication Analysis

Top Keywords

mgmt methylation
40
methylation level
32
association mgmt
12
methylation
10
mgmt
10
level
8
methylation levels
8
level survival
8
9 months diagnosis
8
patients surviving
8

Similar Publications

Glioblastoma, isocitrate dehydrogenase (IDH)-wildtype (GBM), is the most malignant brain tumor in adults, with limited therapeutic intervention. Previous studies have identified a few prognostic markers for GBM, including the methylation status of O-methylguanine-DNA methyltransferase (MGMT) promoter, TERT promoter mutation, EGFR amplification, and CDKN2A/2B deletion. However, the classification of GBM remains incomplete, necessitating a comprehensive analysis.

View Article and Find Full Text PDF

Objective: This study aims to evaluate the effectiveness of deep learning features derived from multi-sequence magnetic resonance imaging (MRI) in determining the O-methylguanine-DNA methyltransferase (MGMT) promoter methylation status among glioblastoma patients.

Methods: Clinical, pathological, and MRI data of 356 glioblastoma patients (251 methylated, 105 unmethylated) were retrospectively examined from the public dataset The Cancer Imaging Archive. Each patient underwent preoperative multi-sequence brain MRI scans, which included T1-weighted imaging (T1WI) and contrast-enhanced T1-weighted imaging (CE-T1WI).

View Article and Find Full Text PDF

A large literature assessed the relationships between the O-methylguanine-DNA methyltransferase (MGMT) promoter methylation status and glioblastoma location with inconsistent results. Studies assessing this association using the percentage of methylation are lacking. This cross-sectional study aimed at investigating relationships between glioblastoma topology and MGMT promoter methylation, both as categorical (presence/absence) and continuous (percentage) status.

View Article and Find Full Text PDF

Atherosclerosis and aneurysm of the aorta are relatively common pathological conditions that remain asymptomatic for a long period of time and have life-threatening and disabling complications. DNA methylation profiling in several regions (a dilated area, a nondilated area, and an atherosclerotic plaque) of the ascending aorta was carried out in patients with aortic aneurysm. DNA methylation was analyzed by reduced representation bisulfite sequencing (RRBS).

View Article and Find Full Text PDF

Background: Alteration in DNA repair and metabolism genes can affect the maintenance of DNA integrity or xenobiotics metabolism, potentially leading to DNA damage accumulation. The present study investigated the association between polymorphisms in Glutathione S-Transferase Pi 1 (GSTP1, rs1695) and O-6-Methylguanine-DNA Methyltransferase (MGMT, rs2308321) genes with urothelial bladder cancer (UBC) susceptibility and prognosis. Furthermore, the methylation patterns of the promoter region of these genes were analyzed in tumor and non-tumor bladder tissues, besides MGMT gene expression in tumor samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!