Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The biological production of FDCA is of considerable value as a potential replacement for petrochemical-derived monomers such as terephthalate, used in polyethylene terephthalate (PET) plastics. HmfF belongs to an uncharacterized branch of the prenylated flavin (prFMN) dependent UbiD family of reversible (de)carboxylases and is proposed to convert 2,5-furandicarboxylic acid (FDCA) to furoic acid in vivo. We present a detailed characterization of HmfF and demonstrate that HmfF can catalyze furoic acid carboxylation at elevated CO levels in vitro. We report the crystal structure of a thermophilic HmfF from , revealing that the active site located above the prFMN cofactor contains a furoic acid/FDCA binding site composed of residues H296-R304-R331 specific to the HmfF branch of UbiD enzymes. Variants of the latter are compromised in activity, while H296N alters the substrate preference to pyrrole compounds. Solution studies and crystal structure determination of an engineered dimeric form of the enzyme revealed an unexpected key role for a UbiD family wide conserved Leu residue in activity. The structural insights into substrate and cofactor binding provide a template for further exploitation of HmfF in the production of FDCA plastic precursors and improve our understanding of catalysis by members of the UbiD enzyme family.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497424 | PMC |
http://dx.doi.org/10.1021/acscatal.8b04862 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!