Secondary amines as coupling partners in direct catalytic asymmetric reductive amination.

Chem Sci

Shanxi Key Laboratory of Natural Products & Chemical Biology , College of Chemistry & Pharmacy , Northwest A&F University, 22 Xinong Road , Yangling , Shanxi 712100 , China . Email: mxchang@

Published: April 2019

The secondary amine participating asymmetric reductive amination remains an unsolved problem in organic synthesis. Here we show for the first time that secondary amines are capable of effectively serving as N-sources in direct asymmetric reductive amination to afford corresponding tertiary chiral amines with the help of a selected additive set under mild conditions (0-25 °C). The applied chiral phosphoramidite ligands are readily prepared from BINOL and easily modified. Compared with common tertiary chiral amine synthetic methods, this procedure is much more concise and scalable, as exemplified by the facile synthesis of rivastigmine and -methyl-1-phenylethanamine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6482873PMC
http://dx.doi.org/10.1039/c9sc00323aDOI Listing

Publication Analysis

Top Keywords

asymmetric reductive
12
reductive amination
12
secondary amines
8
tertiary chiral
8
amines coupling
4
coupling partners
4
partners direct
4
direct catalytic
4
catalytic asymmetric
4
amination secondary
4

Similar Publications

The asymmetric total synthesis of isolinearol, a -dolastane-type diterpenoid that inhibits byssal thread formation by mussels, has been achieved. In the synthesis, the key features include an intramolecular reductive nucleophilic addition using a low-valence titanium species and the direct installation of a ketone side chain. We evaluated their biological activities using the synthetic samples and found the novel inhibitory molecules with a simplified structure exhibit high inhibitory activities against byssus formation and low toxicities.

View Article and Find Full Text PDF

Recent Advances in Asymmetric Organometallic Electrochemical Synthesis (AOES).

Acc Chem Res

January 2025

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

ConspectusIn recent years, our research group has dedicated significant effort to the field of asymmetric organometallic electrochemical synthesis (AOES), which integrates electrochemistry with asymmetric transition metal catalysis. On one hand, we have rationalized that organometallic compounds can serve as molecular electrocatalysts (mediators) to reduce overpotentials and enhance both the reactivity and selectivity of reactions. On the other hand, the conditions for asymmetric transition metal catalysis can be substantially improved through electrochemistry, enabling precise modulation of the transition metal's oxidation state by controlling electrochemical potentials and regulating the electron transfer rate via current adjustments.

View Article and Find Full Text PDF

Shape-controlled asymmetric bowl-like PDA@Au substrates for sensitive SERS detection of anabolic androgenic steroids.

Talanta

January 2025

Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, PR China; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China. Electronic address:

The widespread accumulation of androgenic steroid endocrine disruptors in water and food has garnered increasing attention due to their significant risks to ecosystems and human health. These steroids, which cannot be completely eliminated, highlight the urgent need for advanced detection technologies. In this study, we present a novel emulsion-induced interface-anisotropic assembly strategy to synthesize bowl-like mesoporous polydopamine (PDA) particles, which exhibit high sensitivity in surface-enhanced Raman scattering (SERS) detection.

View Article and Find Full Text PDF

Structure-guided mining of stereoselective reductive aminases for biocatalytic stereodivergent synthesis of chiral piperidinamine and derivatives.

J Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:

Chiral azacyclic amine derivatives occupy a vital role of nitrogen-containing compounds, due to serve as foundational motifs in numerous pharmaceuticals and bioactive substances. Novel complementary enantioselective reductive aminases IRED9 and IRED11 were unveiled through comprehensive gene mining from Streptomyces viridochromogenes and Micromonospora echinaurantiaca, respectively, which both demonstrated enantiomeric excess (ee) values and conversion ratios of up to 99 % towards N-Boc-3-pyridinone (NBPO) and cyclopropylamine. IRED9 exhibited the highest activity at pH 8.

View Article and Find Full Text PDF

Ni-Catalyzed Enantioselective Desymmetrization: Development of Divergent Acyl and Decarbonylative Cross-Coupling Reactions.

J Am Chem Soc

January 2025

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Ni-catalyzed asymmetric reductive cross-coupling reactions provide rapid and modular access to enantioenriched building blocks from simple electrophile precursors. Reductive coupling reactions that can diverge through a common organometallic intermediate to two distinct families of enantioenriched products are particularly versatile but underdeveloped. Here, we describe the development of a bis(oxazoline) ligand that enables the desymmetrization of -anhydrides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!