Photoexcited hot carriers through nonradiative decay offer new opportunities for harnessing longer wavelength light. Here, we have demonstrated a hot-carrier-mediated sub-band gap photodetection in germanium-based planar heterojunction devices. The planar samples that form in situ germanium/titanium nitride (Ge/TiN) interfaces are fabricated by the dc sputtering technique, and the generation of photocurrent by near-infrared (NIR) light illumination is confirmed up to 2600 nm, well exceeding the absorption limit of Ge. The photocurrent obtained with nickel contacts is 3 orders larger than that obtained without metal contacts or with gold contacts in similar structures. The specific detectivity ( D*) value for the TiN/Ge photodetector is obtained to be 6.32 × 10 Jones at the sub-band gap excitation wavelength of 2000 nm without applying any bias. The superior performances of our device are attributed to the broad absorption of the TiN, the plasmonic hot carrier transfer from the TiN to Ge, and built-in potential of the TiN/Ge non-Ohmic junction, which allows efficient separation of photoexcited electron-hole pairs. Our results further support the use of TiN, which is robust and cost-effective, as an alternative to metals for NIR photodetection and photovoltaics when it forms a heterostructure with Ge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b01372 | DOI Listing |
ACS Phys Chem Au
September 2024
Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
Lead-free double perovskites (DPs) will emerge as viable and environmentally safe substitutes for Pb-halide perovskites, demonstrating stability and nontoxicity if their optoelectronic property is greatly improved. Doping has been experimentally validated as a powerful tool for enhancing optoelectronic properties and concurrently reducing the defect state density in DP materials. Fundamental understanding of the optical properties of DPs, particularly the self-trapped exciton (STEs) dynamics, plays a critical role in a range of optoelectronic applications.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia.
The interaction of light with solids can be dramatically enhanced owing to electron-photon momentum matching. This mechanism manifests when light scattering from nanometer-sized clusters including a specific case of self-assembled nanostructures that form a long-range translational order but local disorder (crystal-liquid duality). In this paper, a new strategy based on both cases for the light-matter-interaction enhancement in a direct bandgap semiconductor - lead halide perovskite CsPbBr - by using electric pulse-driven structural disorder, is addressed.
View Article and Find Full Text PDFJ Am Chem Soc
August 2024
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Division Solar Energy, Kekuléstraße 5, 12489 Berlin, Germany.
Understanding the sub-band gap luminescence in Ruddlesden-Popper 2D metal halide hybrid perovskites (2D HaPs) is essential for efficient charge injection and collection in optoelectronic devices. Still, its origins are still under debate with respect to the role of self-trapped excitons or radiative recombination via defect states. In this study, we characterized charge separation, recombination, and transport in single crystals, exfoliated layers, and polycrystalline thin films of butylammonium lead iodide (BAPbI), one of the most prominent 2D HaPs.
View Article and Find Full Text PDFAppl Spectrosc
November 2024
Institute of Microelectronics Technology and High Purity Materials RAS (IMT RAS), Chernogolovka, Russia.
Exposure of polytetrafluoroethylene (PTFE) to argon plasma results in chemical modification of the polymer near the surface. Interestingly, PTFE modification can be induced by the sub-band gap ultraviolet (UV) irradiation. In the latter case, the changes in the chemical structure are very subtle, and they are practically invisible to conventional experimental techniques.
View Article and Find Full Text PDFLight Sci Appl
July 2024
Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore.
Defect centers in wide-band-gap crystals have garnered interest for their potential in applications among optoelectronic and sensor technologies. However, defects embedded in highly insulating crystals, like diamond, silicon carbide, or aluminum oxide, have been notoriously difficult to excite electrically due to their large internal resistance. To address this challenge, we realized a new paradigm of exciting defects in vertical tunneling junctions based on carbon centers in hexagonal boron nitride (hBN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!