Fire-Safe Polyesters Enabled by End-Group Capturing Chemistry.

Angew Chem Int Ed Engl

The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.

Published: July 2019

Upon heating, polyesters decompose to small molecules and release flammable volatiles and toxic gases, primarily through chain scission of their ester linkages, and therefore exhibit poor fire-safety properties, thus restricting their applications. Reported herein is an end-group-capturing effect of (bis)oxazoline groups, generated from the thermal rearrangement of the N-(2-hydroxyphenyl)phthalimide (HPI) moiety which was incorporated into the polyester chain by copolymerization. These copolyesters, as a result, exhibit high efficiency in retarding decomposition by capturing the decomposed products, particularly for the carbonyl-terminated fragments, thus increasing the fire-safety properties, such as self-extinguishing, anti-dripping, and inhibiting heat release and smoke production. The successful application of this method in both semi-aromatic and aliphatic polyesters provide promising perspectives to designing versatile fire-safe polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201900356DOI Listing

Publication Analysis

Top Keywords

fire-safety properties
8
fire-safe polyesters
4
polyesters enabled
4
enabled end-group
4
end-group capturing
4
capturing chemistry
4
chemistry heating
4
heating polyesters
4
polyesters decompose
4
decompose small
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!