Genomic regions of high segmental duplication content and/or structural variation have led to gaps and misassemblies in the human reference sequence, and are refractory to assembly from whole-genome short-read datasets. Human subtelomere regions are highly enriched in both segmental duplication content and structural variations, and as a consequence are both impossible to assemble accurately and highly variable from individual to individual. Recently, we developed a pipeline for improved region-specific assembly called Regional Extension of Assemblies Using Linked-Reads (REXTAL). In this study, we evaluate REXTAL and genome-wide assembly (Supernova) approaches on 10X Genomics linked-reads data sets partitioned and barcoded using the Gel Bead in Emulsion (GEM) microfluidic method. Our results describe the accuracy and relative performance of these two approaches using the reference-based assessment module of QUAST. We show that REXTAL dramatically outperforms the Supernova whole genome assembler in subtelomeric segmental duplication regions, and results in highly accurate assemblies. Nearly all of the REXTAL "misassemblies" identified using default QUAST parameters simply pinpoint locations of tandem repeat arrays in the reference sequence where the repeat array length differs from that in the cognate REXTAL assembly by 1000 bp.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940546 | PMC |
http://dx.doi.org/10.1109/TCBB.2019.2913845 | DOI Listing |
Bioinformatics
January 2025
Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.
Summary: Gene and genome duplications are major evolutionary forces that shape the diversity and complexity of life. However, different duplication modes have distinct impacts on gene function, expression, and regulation. Existing tools for identifying and classifying duplicated genes are either outdated or not user-friendly.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
is an important medicinal herb known as a "natural antibiotic", which has been used in Southeast Asia for thousands of years. The () gene is an important regulatory factor for plant photoperiod flowering and stress response. However, there is currently no detailed research on the genes of .
View Article and Find Full Text PDFGenes (Basel)
December 2024
College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.
Background: , a winter annual grass weed native to Eastern Europe and Western Asia, has become a widespread invasive species in the wheat-growing regions of China due to its high environmental adaptability. This study aims to explore the molecular mechanisms underlying the stress resistance of Tausch's goatgrass, focusing on the gene family.
Methods: A genome-wide analysis was conducted to identify and characterize the gene family in .
BMC Plant Biol
January 2025
Faculty of Biotechnology, October University for Modern Sciences & Arts, 6th October City, Egypt.
Background: Magnesium (Mg) is essential for plant growth and development and plays critical roles in physiological and biochemical processes. Mg deficiency adversely affects growth of plants by limiting shoot and root development, disturbing the structure and membranes of the grana, reducing photosynthesis efficiency, and lowering net CO assimilation. The MGT (Magnesium transporter) family is responsible for the absorption and transportation of magnesium in plants.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China. Electronic address:
DEK is a chromatin protein that interacts with DNA to influence chromatin formation, thereby affecting plant growth, development, and stress response. This study investigates the molecular evolution of the DEK family in plants, with a particular focus on the Brassica species. A total of 127 DEK genes were identified in 34 plants and classified into seven groups based on the phylogenetic analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!