CpG islands (CGIs) including those at imprinting control regions (ICRs) are protected from de novo methylation in somatic cells. However, many cancers often exhibit CGI hypermethylation, implying that the machinery is impaired in cancer cells. Here, we conducted a comprehensive analysis of CGI methylation during somatic cell reprogramming. Although most CGIs remain hypomethylated, a small subset of CGIs, particularly at several ICRs, was often de novo methylated in reprogrammed pluripotent stem cells (PSCs). Such de novo ICR methylation was linked with the silencing of reprogramming factors, which occurs at a late stage of reprogramming. The ICR-preferred CGI hypermethylation was similarly observed in human PSCs. Mechanistically, ablation of Dnmt3a prevented PSCs from de novo ICR methylation. Notably, the ICR-preferred CGI hypermethylation was observed in pediatric cancers, while adult cancers exhibit genome-wide CGI hypermethylation. These results may have important implications in the pathogenesis of pediatric cancers and the application of PSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6524733 | PMC |
http://dx.doi.org/10.1016/j.stemcr.2019.04.008 | DOI Listing |
BMC Oral Health
December 2024
Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
Cell Death Dis
November 2024
Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
Polycomb repressive complex 2 (PRC2) catalyzes the writing of the tri-methylated histone H3 at Lys27 (H3K27me3) epigenetic marker and suppresses the expression of genes, including tumor suppressors. The function of the complex can be partially antagonized by the SWI/SNF chromatin-remodeling complex. Previous studies have suggested that PRC2 is important for the proliferation of tumors with SWI/SNF loss-of-function mutations.
View Article and Find Full Text PDFEpigenomics
December 2024
Third department of internal medicine, Kansai Medical University, Hirakata, Japan.
Clin Epigenetics
October 2024
Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Wanzhou District, Chongqing, 404100, China.
Background: Malignant cells exhibit reduced period circadian regulator 3 (PER3) expression. However, the underlying mechanisms of variations in PER3 expression in cancers and the specific function of PER3 in tumor progression remain poorly understood.
Results: We explored multiple public databases, conducted bioinformatics analyses, and performed in vitro and in vivo experiments for validation.
Genomics Proteomics Bioinformatics
July 2024
College of Computer Science, Sichuan University, Chengdu 610065, China.
Precisely defining and mapping all cytosine (C) positions and their clusters, known as CpG islands (CGIs), as well as their methylation status, are pivotal for genome-wide epigenetic studies, especially when population-centric reference genomes are ready for timely application. Here, we first align the two high-quality reference genomes, T2T-YAO and T2T-CHM13, from different ethnic backgrounds in a base-by-base fashion and compute their genome-wide density-defined and position-defined CGIs. Second, by mapping some representative genome-wide methylation data from selected organs onto the two genomes, we find that there are about 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!