Ubiquitin-specific protease 3 targets TRAF6 for deubiquitination and suppresses IL-1β induced chondrocyte apoptosis.

Biochem Biophys Res Commun

Center of Joint Surgery and Sports Medicine, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, China. Electronic address:

Published: June 2019

Traditionally, the development of osteoarthritis (OA) is associated with factors such as aging and injure, but more and more epidemiological and biological evidence suggests that the disease is closely related to metabolic syndrome and metabolic components. Ubiquitin-specific protease 3(USP3), a member of the USPs family, is a specific protease capable of cleavage of ubiquitin chains linked by proline residues. In our presented study, we firstly found that USP3 expression level was decreased in OA. USP3 overexpression inhibited IL-1β induced chondrocytes apoptosis and nuclear factor κB (NF-κB) activation. USP3 knockdown induced chondrocytes apoptosis and activated NF-κB pathway. USP3 interacts with TRAF6 (tumor necrosis factor-receptor-associated factor 6), which is an essential adaptor protein for the NF-κB (nuclear factor κB) signaling pathway and plays important roles in inflammation and immune response. IL-1β treatment up-regulated the polyubiquitination of TRAF6 in chondrocytes, which was attenuated when USP3 was forced expression. Our study mechanistically links USP3 to TRAF6 in osteoarthritis development. Moreover, these data support the pursuit of USP3 and TRAF6 as potential targets for osteoarthritis therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.04.163DOI Listing

Publication Analysis

Top Keywords

ubiquitin-specific protease
8
il-1β induced
8
induced chondrocytes
8
chondrocytes apoptosis
8
nuclear factor
8
factor κb
8
usp3 traf6
8
usp3
7
traf6
5
protease targets
4

Similar Publications

mRNA display is an effective tool to identify high-affinity macrocyclic binders for challenging protein targets. The success of an mRNA display selection is dependent on generating highly diverse libraries with trillions of peptides. While translation elongation can canonically accommodate the 61 proteinogenic triplet codons, translation initiation is restricted to the native start codon AUG.

View Article and Find Full Text PDF

Proteolysis targeting chimeras (PROTACs) are pivotal in cancer therapy for their ability to degrade specific proteins. However, their non-specificity can lead to systemic toxicity due to protein degradation in normal cells. To address this, we have integrated a nanobody into the PROTACs framework and leveraged the tumor microenvironment to enhance drug specificity.

View Article and Find Full Text PDF

A novel approach for target deconvolution from phenotype-based screening using knowledge graph.

Sci Rep

January 2025

International Joint Research Laboratory for Perception Data Intelligent Processing of Henan, Anyang Normal University, Anyang, 455000, China.

Deconvoluting drug targets is crucial in modern drug development, yet both traditional and artificial intelligence (AI)-driven methods face challenges in terms of completeness, accuracy, and efficiency. Identifying drug targets, especially within complex systems such as the p53 pathway, remains a formidable task. The regulation of this pathway by myriad stress signals and regulatory elements adds layers of complexity to the discovery of effective p53 pathway activators.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is a ubiquitous human ɣ-herpesvirus implicated in various malignancies, including Burkitt's lymphoma and gastric carcinomas. In most EBV-associated cancers, the viral genome is maintained as an extrachromosomal episome by the EBV nuclear antigen-1 (EBNA1). EBNA1 is considered to be a highly stable protein that interacts with the ubiquitin-specific protease 7 (USP7).

View Article and Find Full Text PDF

The other side of the coin: protein deubiquitination by Ubiquitin-Specific Protease 1 in cancer progression and therapy.

Future Med Chem

January 2025

Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China.

Reversible protein ubiquitination is a crucial factor in cellular homeostasis, with Ubiquitin-Specific Protease 1 (USP1) serving as a key deubiquitinase involved in DNA damage response (DDR) and repair mechanisms in cancer. While ubiquitin ligases have been extensively studied, research on the reverse process of ubiquitination, particularly the mechanisms involving USP1, remains relatively limited. USP1 is overexpressed in various cancers, influencing tumor initiation and progression by regulating multiple associated proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!