Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study explored distinct perceptual and decisional contributions to spam email mental construal. Participants classified spam emails according to pairings of three stimulus features - presence or absence of awkward prose, abnormal message structure, and implausible premise. We examined dimensional interactions within general recognition theory (GRT; a multidimensional extension of signal detection theory). Classification accuracy was highest for categories containing either two non-normal dimension levels (e.g. awkward prose and implausible premise) or two normal dimension levels (e.g. normal prose and plausible premise). Modelling indicated both perceptual and decisional contributions to classification responding. In most cases, perceptual discriminability was higher along one dimension when stimuli contained a non-normal level of the paired dimension (e.g. prose discriminability was higher with abnormal structure). Similarly, decision criteria along one dimension were biased in favour of the non-normal response when stimuli contained a non-normal level of the paired dimension. Potential applications for training are discussed. We applied general recognition theory (i.e. multivariate signal detection theory) to spam email classification at low or high levels of three stimulus dimensions: premise plausibility, prose quality, and email structure. Relevant to training, this approach helped identify perceptual and decisional biases that could be leveraged to individualise training.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629481 | PMC |
http://dx.doi.org/10.1080/00140139.2019.1614681 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!