Understanding the influence of salt ions on the microscopic properties of liquid interfaces is of both fundamental and practical importance. A large number of previous experimental and theoretical investigations have explored the salt effects on the surfaces of either pure water or neat organic liquid. However, how the salt ions affect the interfacial structures of water/organic liquid mixtures has rarely been studied. Here, the molecular dynamics (MD) simulations and sum frequency generation vibrational spectroscopy (SFG-VS) were carried out to investigate the influence of sodium iodide (NaI) on the air/liquid interfaces of the methanol-water mixtures. The SFG-VS spectral intensities were discovered to increase with the addition of 3 M NaI, while the center frequencies of the C-H stretching vibrations at high methanol concentrations showed a ∼2 cm blue shift compared with those obtained before adding NaI. The MD results indicated that Na and I can only affect Part I (near the bulk phase) but not Part II (near the gas phase) of the interfacial region. It was also found that the average orientations of interfacial methyl groups were constant and not effectively disturbed by the changes of methanol concentrations or the addition of NaI. It is therefore concluded that the changes of the SFG-VS intensities upon the addition of NaI salts were mainly caused by the increasing number of interfacial methanol molecules. Further analysis showed that the existence of NaI affects the surface tensions more for the interfaces with higher bulk methanol concentrations, which is in agreement with the SFG-VS results. It is noteworthy that the maximum number density of methanol molecules with the net nonzero orientations is reached near the Gibbs dividing surface, the reasons of which are worth further investigating.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b03847 | DOI Listing |
Dalton Trans
January 2025
Faculty of Technology, Dong Nai Technology University, 206 Nguyen Khuyen, Trang Dai Ward, Bien Hoa City, Dong Nai 76000, Vietnam.
Surface-enhanced Raman scattering (SERS) represents a compelling detection methodology centered on the electromagnetic fields, commonly termed "hot spots", generated around noble nanoparticles. Nonetheless, the efficacy of electromagnetic field (EMF) amplification is constrained when utilizing individual nanoparticles. There has been a notable lack of experimental and theoretically simulated studies regarding the increase of the electromagnetic field when gold nanorods with different aspect ratios undergo self-assembly in either perpendicular or parallel orientations to substrates.
View Article and Find Full Text PDFJ Craniofac Surg
October 2024
Department of Orthodontics, Faculty of Dentistry, Khon Kaen University, Nai Muang, Muang, Khon Kaen, Thailand.
Digital orthodontics has been integrated into NasoAlveolar Molding (NAM) therapy to overcome challenges in the conventional NAM method. This study introduced an individualized Digital NAM (iDNAM) and evaluated the changes in the alveolar ridges and nasolabial morphology after iDNAM treatment. Prospective data were collected from 15 infants with complete unilateral cleft lip and palate who underwent iDNAM therapy.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Nickel-catalyzed cross-electrophile coupling (XEC) reactions of (hetero)aryl electrophiles represent appealing alternatives to palladium-catalyzed methods for biaryl synthesis, but they often generate significant quantities of homocoupling and/or proto-dehalogenation side products. In this study, an informer library of heteroaryl chloride and aryl bromide coupling partners is used to identify Ni-catalyzed XEC conditions that access high selectivity for the cross-product when using equimolar quantities of the two substrates. Two different catalyst systems are identified that show complementary scope and broad functional-group tolerance, and time-course data suggest that the two methods follow different mechanisms.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.
Here we demonstrate direct ink write (DIW) additive manufacturing of carbon nanotube (CNT)/phenolic composites with heat dissipation and excellent electromagnetic interference (EMI) shielding capabilities without curing-induced deformation. Such polymer composites are valuable for protecting electronic devices from overheating and electromagnetic interference. CNTs were used as a multifunctional nanofiller to improve electrical and thermal conductivity, printability, stability during curing, and EMI shielding performance of CNT/phenolic composites.
View Article and Find Full Text PDFBMJ Glob Health
November 2024
Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Background: Article 5.3 of the WHO Framework Convention on Tobacco Control (FCTC) was developed to protect public health policies from tobacco industry interference. The guiding principles of Article 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!