Phosphorus recovery by ion exchange in a solid carbonate: modeling of the process.

Environ Sci Pollut Res Int

Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, 62550, Jiutepec, Morelos, Mexico.

Published: May 2020

Phosphorus (P) is a nutrient for plant growth but also a pollutant in water bodies causing eutrophication. The source of P is mainly human and animal wastewater and runoffs from different land uses. The objective of the present study is to evaluate P removal and recovery processes by ion exchange (IE) with solid carbonate (SC) in biodigestor-treated swine effluent (BTSE) using hydrogeochemical modeling. For this, BTSE compositions were obtained by literature review. A synthetized and characterized SC was used and the ion exchange site concentration ([SC-IE]) and the IE constants (K) were obtained experimentally and applied to model P and major anion removal and recovery processes. P recovery was evaluated for different BTSE compositions and several concentrations of SC, dissolved P (HPO), competing anions such as SO, and CO. The simulations suggest that a [SC-IE]:[HPO] of 1.4 molar ratio would allow the recovery of 90% of HPO in BTSE, and at average alkalinity concentrations in BTSE, CO would compete with HPO for the SC-IE. The P recovery by the SC-IE process was compared with two other methods commonly used in P removal from BTSE: removal with aluminum sulfate and precipitation of struvite as a function of pH. The results suggest that SC-IE is the most efficient method in the pH range of BTSE. Besides, HPO was readily recovered as inorganic P that may be reused in agriculture and industrial processes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-05189-9DOI Listing

Publication Analysis

Top Keywords

ion exchange
12
exchange solid
8
solid carbonate
8
removal recovery
8
recovery processes
8
btse compositions
8
btse
7
recovery
5
phosphorus recovery
4
recovery ion
4

Similar Publications

Land use conversion from natural forests to grassland, plantation forests, mono-cropping coffee and croplands is a significant causes of soil degradation, leading to aggravate soil acidity and nutrient depletion. However, there is limited information regarding comprehensive effect of land use conversion on soil fertility and acidity in western Oromia Region of Ethiopia. Hence, this study aims to assess the surface soil fertility and acidity across different land use types (forest, crop, eucalyptus land, grazing land, and coffee farmland) to provide management options.

View Article and Find Full Text PDF

Synthetic mordenite is widely used as a molecular sieve, adsorbent, and catalyst. To enhance these functionalities, it is crucial to understand the ion-exchange properties and cation-exchange sites of the zeolite. In this study, we analyzed the structural changes in fully Cs-, Sr-, Cd-, and Pb-exchanged mordenite by using synchrotron X-ray powder diffraction under ambient conditions.

View Article and Find Full Text PDF

High-Performance and Anti-Freezing Moisture-Electric Generator Combining Ion-Exchange Membrane and Ionic Hydrogel.

Small

December 2024

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China.

Moisture-electric generators (MEGs), which convert moisture chemical potential energy into electrical power, are attracting increasing attention as clean energy harvesting and conversion technologies. However, existing devices suffer from inadequate moisture trapping, intermittent electric output, suboptimal performance at low relative humidity (RH), and limited ion separation efficiency. This study designs an ionic hydrogel MEG capable of continuously generating energy with enhanced selective ion transport and sustained ion-to-electron current conversion at low RH by integrating an ion-exchange membrane (IEM-MEG).

View Article and Find Full Text PDF

Resonant Quantum Magnetodielectric Effect in Multiferroic Metal-Organic Framework [CHNH]Co(HCOO).

Small

December 2024

Department of Applied Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China.

The observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal-organic framework [CHNH]Co(HCOO).is reported. An intrinsic magnetic phase separation emerges at low temperatures due to the hydrogen-bond-modified long-range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion (Co) magnets.

View Article and Find Full Text PDF

Introduction: Clinic infections caused by various microorganisms are a public health concern. The rise of new strains resistant to traditional antibiotics has exacerbated the problem. Thus, the search for new antimicrobial molecules remains highly relevant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!