The removal of three over-the-counter pharmaceuticals from aqueous solution using four different adsorbents was analyzed. To study the effect of infused pharmaceutical and adsorbent on the adsorption system, both the concentration of drug and adsorbent dosage were varied, with constant temperature and pressure at different contact time. Adsorption kinetics, isotherm models, and ANOVA allegorized a generic trend for pharmaceutical removal efficiency of the adsorbents that varied as follows: activated carbon > fly ash > bentonite > sugar cane bagasse ash. The Tempkin model appears to fit the isotherm data better than Freundlich and Langmuir. Correspondingly, the kinetic studies implied a pseudo-second-order fit, to understand the mechanism by which the solute accumulates on the surface of a solid and gets adsorbed to the surface via intra-particle diffusion. Furthermore, some special cases of removal tendencies were noted based on sorbate-sorbent interaction. Effectively, it was observed that at an adsorbent loading of 2 g and initial concentration of 0.2 mmol L, bentonite, fly ash, and activated carbon were able to strip more than 80% of all pharmaceuticals from urine. A framework for the highest significance of the experiments was obtained using response surface methodology by the combination of ciprofloxacin-bentonite followed by paracetamol-activated carbon and ibuprofen-activated carbon. Quasi-Newton and Bayesian regression methods were implemented on Langmuir isotherm by designing the neural network for the batch adsorption experiments. Based on the numerical calculations and graphical representations, the proposed model leads to the result that error is minimized and the values are optimized for different pharmaceuticals such as paracetamol, ibuprofen, ciprofloxacin that can be removed from wastewater streams by locally available adsorbents. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-05070-9DOI Listing

Publication Analysis

Top Keywords

design analysis
4
removal
4
analysis removal
4
removal active
4
active pharmaceutical
4
pharmaceutical residues
4
residues synthetic
4
synthetic wastewater
4
wastewater stream
4
stream removal
4

Similar Publications

Background: Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation and execution of speech.

View Article and Find Full Text PDF

Background: Conversational agents (CAs) are finding increasing application in health and social care, not least due to their growing use in the home. Recent developments in artificial intelligence, machine learning, and natural language processing have enabled a variety of new uses for CAs. One type of CA that has received increasing attention recently is smart speakers.

View Article and Find Full Text PDF

Due to the exponential growth in technology, exergames emerged as a potential tool to foster physical activity (PA) levels. This study provides an overall view of the literature on the effects of exergaming on physical fitness components among overweight and obese children and adolescents. A systematic review and meta-analysis following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was performed in the PubMed, Web of Science, and Scopus databases.

View Article and Find Full Text PDF

Motivation: Predicting RNA-binding proteins (RBPs) is central to understanding post-transcriptional regulatory mechanisms. Here, we introduce EnrichRBP, an automated and interpretable computational platform specifically designed for the comprehensive analysis of RBP interactions with RNA.

Results: EnrichRBP is a web service that enables researchers to develop original deep learning and machine learning architectures to explore the complex dynamics of RNA-binding proteins.

View Article and Find Full Text PDF

An Efficient and Cost-Effective Novel Strategy for Identifying CRISPR-Cas-Mediated Mutants in Plant Offspring.

CRISPR J

January 2025

Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, China.

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system has revolutionized targeted mutagenesis, but screening for mutations in large sample pools can be time-consuming and costly. We present an efficient and cost-effective polymerase chain reaction (PCR)-based strategy for identifying edited mutants in the T generation. Unlike previous methods, our approach addresses the challenges of large progeny populations by using T generation sequencing results for genotype prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!