A brief review of tumor immunotherapies shows significant advancements in academic research and preclinical studies. Analysis of different immune cell pathways, including macrophage activation, natural killer cells, and dendritic cell presentation show promising clinical results when targeted with different nanoparticle polymer and gold materials. Following a brief discussion on immuno-oncology successes, detailed results are discussed in macrophage activation, dendritic cell presentation, and lysis of tumor cells with natural killer cells. Common targets include tumor-associated macrophages and induction of the proinflammatory phenotype, dual targeting of cell and humoral immunity with dendritic cells, and creating chimeric antigen receptors on natural killer cells. An analysis of the results shows a variety of nanoparticle synthesis methods are required depending on drug type and tissue type affected by tumors. Future research is discussed in conjunction with a brief analysis of completed clinical trial data on cancer therapies using nanoparticles to date. Although paclitaxel-loaded albumin nanoparticles are most frequently studied, academic research shows there may be additional mechanisms of action to elicit anti-tumor activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12094-019-02081-3 | DOI Listing |
Background: Accumulating evidence suggests that the presynaptic protein α-synuclein (α-syn), is involved in the pathophysiology of AD and elevated in the cerebrospinal fluid (CSF). The role of Natural Killer (NK) cells of the innate immune system in AD has largely been overlooked. In a murine model, depletion of NK cells augmented the accumulation of pathological α-syn.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, China.
Gastric cancer (GC) remains a significant global health challenge. This study aimed to comprehensively analyze GC epidemiology and risk factors to inform prevention and intervention strategies. We analyzed the Global Burden of Disease Study 2021 data, conducted 16 different machine learning (ML) models of NHANES data, performed Mendelian randomization (MR) studies on disease phenotypes, dietary preferences, microbiome, blood-based markers, and integrated differential gene expression and expression quantitative trait loci (eQTL) data from multiple cohorts to identify factors associated with GC risk.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
Resistance to the currently available treatment paradigms is one of the main factors that contributes to poor outcomes in patients with advanced cervical cancer. Novel targeted therapy approaches might enhance the patient's treatment outcome and are urgently needed for this malignancy. While chimeric-antigen receptor (CAR)-based adoptive immunotherapy displays a promising treatment strategy for liquid cancers, their use against cervical cancer is largely unexplored.
View Article and Find Full Text PDFJ Cancer
January 2025
Shanghai TCM-Integrated Hospital, Shanghai university of TCM, Shanghai, China.
Killer Cell Lectin Like Receptor D1 (KLRD1) plays a crucial role in antitumor immunity. However, its expression patterns across various cancers, its relationship with patient prognosis, and its potential as an immunotherapy target remain inadequately understood. We analyzed KLRD1 expression across various cancer types using multi-omics data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases, correlating it with patient prognosis.
View Article and Find Full Text PDFBackground: Initial analysis of liver transplant biopsies in the INTERLIVER study (ClinicalTrials.gov; unique identifier NCT03193151) using rejection-associated transcripts failed to find an antibody-mediated rejection state (ie, rich in natural killer [NK] cells and with interferon-gamma effects). We recently developed an optimization strategy in lung transplants that isolated an NK cell-enriched rejection-like (NKRL) state that was molecularly distinct from T cell-mediated rejection (TCMR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!