Host innate immune system is critical for combating invading microbes including Influenza A virus (IAV). As an important arm of the innate immunity, the NLRP3 inflammasome has been found essential for protecting host against IAV challenge, while the mechanism remained elusive. Here we found that mice carrying a gain-of-function mutation in the Nlrp3 gene (Nlrp3) are strongly resistant to IAV infection. Upon H1N1 IAV infection, the Nlrp3 mice exhibited decreased weight loss, increased survival rate and attenuated lung damage compared with WT littermate controls. Mechanistically, the resistance of Nlrp3 mice to IAV infection was dependent on IL-1β-mediated neutrophil recruitment. Upon IAV infection, mice carrying the Nlrp3 mutation produced more IL-1β than WT mice in the lung, which enhanced neutrophil recruitment locally. The recruited neutrophils facilitated IAV clearance, so that the viral load in Nlrp3 mice was lower than that in control mice. Conversely, neutrophil depletion in Nlrp3 mice compromised IAV clearance. Taken together, our results demonstrate a previously undescribed mechanism by which hyperactivation of the NLRP3 Inflammasome protects mice from IAV infection through IL-1β mediated neutrophil recruitment, thus suggest that positively fine tuning the physiological function of NLRP3 inflammasome can be beneficial for a mammalian host against IAV challenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2019.04.019 | DOI Listing |
Int J Mol Sci
December 2024
Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland.
Small nucleolar RNAs (snoRNAs) are non-coding RNAs (ncRNAs) that regulate many cellular processes. Changes in the profiles of cellular ncRNAs and those secreted in exosomes are observed during viral infection. In our study, we analysed differences in expression profiles of snoRNAs isolated from exosomes of influenza (IAV)-infected and non-infected MDCK cells using high-throughput sequencing.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
To bolster the capacity for managing potential infectious diseases in the future, it is critical to develop specific antiviral drugs that can be rapidly designed and delivered precisely. Herein, a CRISPR/Cas13d system for broad-spectrum targeting of influenza A virus (IAV) from human, avian, and swine sources is designed, incorporating Cas13d mRNA and a tandem CRISPR RNA (crRNA) specific for the highly conserved regions of viral polymerase acidic (PA), nucleoprotein (NP), and matrix (M) gene segments, respectively. Given that the virus targets cells with specific receptors but is not limited to a single organ, a Susceptible Cell Selective Delivery (SCSD) system is developed by modifying a lipid nanoparticle with a peptide mimicking the function of the hemagglutinin of influenza virus to target sialic acid receptors.
View Article and Find Full Text PDFArch Virol
January 2025
Molecular Bioassay Laboratory, Institute of Advanced Virology, Bio 360 Life Sciences Park, Thonnakkal, Thiruvananthapuram, Kerala, India.
Human bocaviruses (HBoVs) can cause respiratory illness in young children. Although the first HBoV infection in India was reported in 2010, very little information is available about its prevalence, clinical features, or geographic distribution in this country. This study was conducted using 136 respiratory samples from paediatric patients in a tertiary care hospital in Kerala, 21 of which tested positive for HBoV1 and were further characterized through VP1/VP2 gene sequencing.
View Article and Find Full Text PDFNat Immunol
January 2025
Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.
Disease tolerance is an evolutionarily conserved host defense strategy that preserves tissue integrity and physiology without affecting pathogen load. Unlike host resistance, the mechanisms underlying disease tolerance remain poorly understood. In the present study, we investigated whether an adjuvant (β-glucan) can reprogram innate immunity to provide protection against influenza A virus (IAV) infection.
View Article and Find Full Text PDFEur Respir Rev
January 2025
Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid Spain
Background: The morbidity and mortality associated with influenza viruses are a significant public health challenge. Annual vaccination against circulating influenza strains reduces hospitalisations and increases survival rates but requires a yearly redesign of vaccines against prevalent subtypes. The complex genetics of influenza viruses with high antigenic drift create an ongoing challenge in vaccine development to address dynamic influenza epidemiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!