Prenatal polycyclic aromatic hydrocarbons metabolites, cord blood telomere length, and neonatal neurobehavioral development.

Environ Res

Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722W. 168th Street, New York, NY, 10032, USA. Electronic address:

Published: July 2019

Background: Prenatal exposure to polycyclic aromatic hydrocarbon (PAH) is a potential risk factor for child neurobehavioral development. Telomere length (TL) has important implications for health over the life course.

Objective: In this study, we aimed to investigate whether prenatal urinary PAH metabolites were associated with adverse neonatal neurobehavioral development and altered cord blood TL and to explore whether the change of TL was a predictor of neonatal neurobehavioral development.

Method: We enrolled 283 nonsmoking pregnant women in Taiyuan city. Eleven PAH metabolites were measured in maternal urine samples. TL in cord blood was measured by real time quantitative polymerase chain reaction. Neonatal behavioral neurological assessment (NBNA) tests were conducted when the infants were three days old. Multiple linear regression models were used to analyze the associations of maternal urinary PAH metabolites with NBNA scores and cord blood TL, and restricted cubic spline models were further used to examine the shapes of dose-response relationships. A mediation analysis was also conducted.

Result: We observed dose-response associations of maternal urinary 2-hydroxyfluorene (2-OHFlu) and 2-hydroxyphenanthrene (2-OH Phe) with decreased active tone scores, sum of NBNA scores, and cord blood TL (P for trend<0.05). Each 1 unit increase in urinary levels of Ln (2-OH Flu) or Ln (2-OH Phe) was associated with a 0.092 or 0.135 decrease in the active tone scores and a 0.174 or 0.199 decrease in the sum of NBNA scores. Mediation analysis showed TL could explained 21.74% of the effect of sum of NBNA scores change related to prenatal exposure to 2-OH Phe (P for mediator = 0.047).

Conclusion: Our data indicates maternal urinary specific PAH metabolites are inversely associated with neonatal neurobehavioral development and cord blood TL. TL mediates the associations of 2-OH Phe with neonatal neurobehavioral development and partly explains the effect of 2-OH Phe on neonatal neurobehavioral development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2019.04.024DOI Listing

Publication Analysis

Top Keywords

cord blood
20
neonatal neurobehavioral
12
neurobehavioral development
12
pah metabolites
12
polycyclic aromatic
8
telomere length
8
urinary pah
8
associations maternal
8
maternal urinary
8
nbna scores
8

Similar Publications

We investigated BCMA-directed CART in patients with relapsed or refractory multiple myeloma (RRMM) and CNS involvement. Ten patients who received either ide-cel (n=6) or cilta-cel (n=4) were included in this analysis. Patients had brain/cranial nerve and/or spinal cord involvement/leptomeningeal disease evident on either MRI (100%) and/or CSF (40%).

View Article and Find Full Text PDF

Gene therapy for sickle cell disease: recent advances, clinical trials and future directions.

Cytotherapy

December 2024

Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.

Sickle cell disease (SCD) is the most common inherited blood disorder worldwide, impacting millions and imposing severe healthcare challenges, particularly in resource-limited regions. Current treatments have variable efficacy and require lifelong adherence. Allogeneic Hematopoietic Stem Cell Transplantation can be curative but comes with significant side effects and limited donor availability limits its widespread applicability.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is a prevalent inherited blood disorder, particularly affecting populations in Africa. This review examined the disease's burden, its diverse clinical presentations, and the challenges associated with its management in African settings. Africa bears a significant burden of SCD, with prevalence varying across countries and age groups.

View Article and Find Full Text PDF

Effects of Gestational Diabetes Mellitus on Fetal Cardiac Morphology.

Med Sci (Basel)

December 2024

Department of Perinatology, Ege University, İzmir 35000, Turkey.

Objective: This study aims to investigate the possible effects of gestational diabetes mellitus (GDM) on fetal heart structure and the relationship of this effect with maternal blood sugar control.

Materials And Methods: In this cross-sectional study, 19 women with GDM at 24-36 weeks of gestation (case group) and 21 healthy pregnant women at the same weeks of gestation (control group) were examined. Fetal heart structure was evaluated by ultrasonography; interventricular septum (IVS) thickness, right and left ventricular sphericity indices, global sphericity index (GSI) and cardio-thoracic ratio were also measured.

View Article and Find Full Text PDF

Machine Learning and Metabolomics Predict Mesenchymal Stem Cell Osteogenic Differentiation in 2D and 3D Cultures.

J Funct Biomater

December 2024

BioMedical Systems Engineering Laboratory, Panoz Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland.

Stem cells have been widely used to produce artificial bone grafts. Nonetheless, the variability in the degree of stem cell differentiation is an inherent drawback of artificial graft development and requires robust evaluation tools that can certify the quality of stem cell-based products and avoid source-tissue-related and patient-specific variability in outcomes. Omics analyses have been utilised for the evaluation of stem cell attributes in all stages of stem cell biomanufacturing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!