Biodegradable polymerized simvastatin stimulates bone formation.

Acta Biomater

F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA. Electronic address:

Published: July 2019

AI Article Synopsis

  • Prior research showed that polymerized simvastatin can release the drug slowly and degrade, which sets the stage for this study that focuses on its effects on bone growth in rats.
  • In vivo tests using different simvastatin-containing polymers highlighted that poly(ethylene glycol)-block-poly(simvastatin) resulted in significant new bone growth after four weeks, unlike traditional PLGA which caused bone loss.
  • The study suggests that the new polymerized form of simvastatin, due to its slow degradation and controlled inflammation response, holds promise for improving bone regeneration therapies.

Article Abstract

Previous research from our labs demonstrated the synthesis of polymerized simvastatin by ring-opening polymerization and slow degradation with controlled release of simvastatin in vitro. The objective of the present study was to evaluate the degradation and intramembranous bone-forming potential of simvastatin-containing polyprodrugs in vivo using a rat calvarial onlay model. Poly(ethylene glycol)-block-poly(simvastatin) and poly(ethylene glycol)-block-poly(simvastatin)-ran-poly(glycolide) were compared with simvastatin conventionally encapsulated in poly(lactic-co-glycolic acid) (PLGA) and pure PLGA. The rate of degradation was higher for PLGA with and without simvastatin relative to the simvastatin polyprodrugs. Significant new bone growth at the circumference of poly(ethylene glycol)-block-poly(simvastatin) disks was observed beginning at 4 weeks, whereas severe bone resorption (4 weeks) and bone loss (8 weeks) were observed for PLGA loaded with simvastatin. No significant systemic effects were observed for serum total cholesterol and body weight. Increased expression of osteogenic (BMP-2, Runx2, and ALP), angiogenic (VEGF), and inflammatory cytokines (IL-6 and NF-ĸB) genes was seen with all polymers at the end of 8 weeks. Poly(ethylene glycol)-block-poly(simvastatin), with slow degradation and drug release, controlled inflammation, and significant osteogenic effect, is a candidate for use in bone regeneration applications. STATEMENT OF SIGNIFICANCE: Traditional drug delivery systems, e.g., drug encapsulated in poly(lactic-co-glycolic acid) (PLGA), are typically passive and have limited drug payload. As an alternative, we polymerized the drug simvastatin, which has multiple physiological effects, into macromolecules ("polysimvastatin") via ring-opening polymerization. We previously demonstrated that the rate of degradation and drug (simvastatin) release can be adjusted by copolymerizing it with other monomers. The present results demonstrate significant new bone growth around polysimvastatin, whereas severe bone loss occurred for PLGA loaded with simvastatin. This degradable biomaterial with biofunctionality integrated into the polymeric backbone is a useful candidate for bone regeneration applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615997PMC
http://dx.doi.org/10.1016/j.actbio.2019.04.059DOI Listing

Publication Analysis

Top Keywords

polyethylene glycol-block-polysimvastatin
12
simvastatin
10
polymerized simvastatin
8
bone
8
ring-opening polymerization
8
slow degradation
8
encapsulated polylactic-co-glycolic
8
polylactic-co-glycolic acid
8
acid plga
8
rate degradation
8

Similar Publications

This work aims to address key issues in the ballistic performance of ceramic-based composite armor, particularly at the joints of spliced ​​bulletproof panels. The edge structure of C/C-SiC ceramic plates and ultra-high molecular weight polyethylene is redesigned to superimpose the joint areas. These structurally optimized composite pads are examined by numerical simulation of impact dynamics to understand their anti-penetration performance whose accuracy is then validated by live fire tests.

View Article and Find Full Text PDF

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.

View Article and Find Full Text PDF

Catalytic upcycling of polyethylene terephthalate (PET) into high-value oxygenated products is a fascinating process, yet it remains challenging. Here, we present a one-step tandem strategy to realize the thermal catalytic oxidation upcycling of PET to terephthalic acid (TPA) and high-value glycolic acid (GA) instead of ethylene glycol (EG). By using the Au/NiO with rich oxygen vacancies as catalyst, we successfully accelerate the hydrolysis of PET, accompanied by obtaining 99% TPA yield and 87.

View Article and Find Full Text PDF

Hydronium Ions Are Less Excluded from Hydrophobic Polymer-Water Interfaces than Hydroxide Ions.

J Phys Chem B

December 2024

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!