Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Triple negative breast cancers (TNBC) are aggressive malignancies for which chemotherapy is the only treatment option. Many TNBC acquire chemotherapy resistance, notably docetaxel, which has been associated with the overexpression of transcription factors (TFs), such as ENGRAILED1 (EN1). Here, we have developed a tumor delivery system for docetaxel-PGMA-PAA-nanoparticles and interference peptides designed to specifically inhibit EN1 (EN1-iPeps). To promote tumor specific targeting, we functionalized these nanoparticles with EN1-iPeps engineered with RGD sequences. We found that these peptides reduce cell viability and induce apoptosis in TNBC cells with negligible effects on normal cells (EN1). Moreover, EN1-RGD-iPeps-mediated nanoparticle internalization into breast cancer cells was via integrins and intravenous injection of this nanoformulation increased tumor accumulation. Furthermore, docetaxel nanoparticles functionalized with EN1-RGD-iPeps significantly reduced TNBC growth both in vitro and in vivo without showing toxicity. Our results suggest that this targeted nanoformulation represents a new and safe therapeutic approach for chemoresistant TNBCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2019.04.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!